Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel

被引:5
|
作者
Kavitha, Velusamy [1 ]
Arjunan, Mani Mallika [2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
机构
[1] Karunya Inst Technol & Sci, Sch Sci Arts Media & Management, Dept Math, Coimbatore 641114, Tamil Nadu, India
[2] SASTRA Deemed Univ, Sch Arts Sci & Humanities, Dept Math, Thanjavur 613401, Tamil Nadu, India
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[4] Inst Space Sci, Magurele, Romania
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
关键词
Atangana-Baleanu fractional derivative; non-instantaneous impulses; Mittag-Leffler kernel; fixed point theorem; EQUATIONS; EXISTENCE;
D O I
10.3934/math.2022519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of fractional-order functional differential equations with non-instantaneous impulses within the Mittag-Leffler kernel is examined in this manuscript. Non-instantaneous impulses are involved in such equations and the solution semigroup is not compact in Banach spaces. We suppose that the nonlinear term fulfills a non-compactness measure criterion and a local growth constraint. We further assume that non-instantaneous impulsive functions satisfy specific Lipschitz criteria. Finally, an example is given to justify the theoretical results.
引用
收藏
页码:9353 / 9372
页数:20
相关论文
共 50 条
  • [21] Mittag-Leffler stability of nabla discrete fractional-order dynamic systems
    Wei, Yingdong
    Wei, Yiheng
    Chen, Yuquan
    Wang, Yong
    NONLINEAR DYNAMICS, 2020, 101 (01) : 407 - 417
  • [22] Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 416 - 422
  • [23] FRACTIONAL ORDER VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH MITTAG-LEFFLER KERNEL
    Khan, Hasib
    Abdeljawad, Thabet
    Gomez-Aguilar, J. F.
    Tajadodi, Haleh
    Khan, Aziz
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
  • [24] Globally β-Mittag-Leffler stability and β-Mittag-Leffler convergence in Lagrange sense for impulsive fractional-order complex-valued neural networks
    Li, Hui
    Kao, Yonggui
    Li, Hong-Li
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [25] Fractional order volterra integro-differential equation with mittag-leffler kernel
    Khan, Hasib
    Abdeljawad, Thabet
    Gómez-Aguilar, J.F.
    Tajadodi, Haleh
    Khan, Aziz
    Fractals, 2021, 29 (06):
  • [26] Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems
    Jian, Jigui
    Wu, Kai
    Wang, Baoxian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [27] Mittag-Leffler Stabilization of Impulsive Fractional-Order Neural Networks with Continuous and Distributed Delays
    Ruan, Xiaoli
    Liu, Jingping
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION, CYBERNETICS AND COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2017, : 383 - 388
  • [28] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Xujun Yang
    Chuandong Li
    Tingwen Huang
    Qiankun Song
    Junjian Huang
    Neural Processing Letters, 2018, 48 : 459 - 479
  • [29] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    Huang, Junjian
    NEURAL PROCESSING LETTERS, 2018, 48 (01) : 459 - 479
  • [30] Mittag-Leffler Stability of Fractional-Order Nonlinear Differential Systems With State-Dependent Delays
    Li, Hui
    Kao, Yonggui
    Chen, Yangquan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (05) : 2108 - 2116