Global Mittag-Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays

被引:11
|
作者
Rifhat, Ramziya [1 ,3 ]
Muhammadhaji, Ahmadjan [1 ,2 ]
Teng, Zhidong [1 ]
机构
[1] Xinjiang Univ Urumqi, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xinjiang Univ Urumqi, Inst Math Phys, Xinjiang Weiwuerzizhiqu 830046, Peoples R China
[3] Xinjiang Med Univ Urumqi, Coll Med Engn & Technol, Urumqi 830011, Peoples R China
基金
中国国家自然科学基金;
关键词
Global Mittag-Leffler synchronization; impulsive fractional functional differential equations; neural networks; time-varying delays; distributed delays; FINITE-TIME SYNCHRONIZATION; VARYING DELAYS; STABILITY ANALYSIS; SYSTEMS; CHAOS;
D O I
10.1515/ijnsns-2017-0179
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we investigate the synchronization problem of impulsive fractional-order neural networks with both time-varying and distributed delays. By using the fractional Lyapunov method and Mittag-Leffler function, some sufficient conditions are derived to realize the global Mittag-Leffler synchronization of impulsive fractional-order neural networks and one illustrative example is given to demonstrate the effectiveness of the obtained results.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 50 条
  • [1] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Xujun Yang
    Chuandong Li
    Tingwen Huang
    Qiankun Song
    Junjian Huang
    [J]. Neural Processing Letters, 2018, 48 : 459 - 479
  • [2] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    Huang, Junjian
    [J]. NEURAL PROCESSING LETTERS, 2018, 48 (01) : 459 - 479
  • [3] Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays
    Ivanka Stamova
    [J]. Nonlinear Dynamics, 2014, 77 : 1251 - 1260
  • [4] Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays
    Stamova, Ivanka
    [J]. NONLINEAR DYNAMICS, 2014, 77 (04) : 1251 - 1260
  • [5] Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays
    Zheng, Bibo
    Wang, Zhanshan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
  • [6] Mittag-Leffler Stabilization of Impulsive Fractional-Order Neural Networks with Continuous and Distributed Delays
    Ruan, Xiaoli
    Liu, Jingping
    [J]. 2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION, CYBERNETICS AND COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2017, : 383 - 388
  • [7] Global Mittag-Leffler synchronization of delayed fractional-order memristive neural networks
    Yingjie Fan
    Xia Huang
    Zhen Wang
    Jianwei Xia
    Yuxia Li
    [J]. Advances in Difference Equations, 2018
  • [8] Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations
    Ding, Zhixia
    Shen, Yi
    Wang, Leimin
    [J]. NEURAL NETWORKS, 2016, 73 : 77 - 85
  • [9] Global Mittag-Leffler synchronization of delayed fractional-order memristive neural networks
    Fan, Yingjie
    Huang, Xia
    Wang, Zhen
    Xia, Jianwei
    Li, Yuxia
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [10] Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays
    Zhang, Xiao-Li
    Li, Hong-Li
    Kao, Yonggui
    Zhang, Long
    Jiang, Haijun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 433