Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations

被引:79
|
作者
Ding, Zhixia
Shen, Yi [1 ]
Wang, Leimin
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Mittag-Leffler synchronization; Fractional-order neural networks; Discontinuous activation; Filippov solution; PROJECTIVE SYNCHRONIZATION; PROGRAMMING PROBLEMS; DYNAMICAL BEHAVIORS; FINITE-TIME; STABILITY; CHAOS; CONVERGENCE; CALCULUS; SYSTEMS; MODEL;
D O I
10.1016/j.neunet.2015.10.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is concerned with the global Mittag-Leffler synchronization for a class of fractional-order neural networks with discontinuous activations (FNNDAs). We give the concept of Filippov solution for FNNDAs in the sense of Caputo's fractional derivation. By using a singular Gronwall inequality and the properties of fractional calculus, the existence of global solution under the framework of Filippov for FNNDAs is proved. Based on the nonsmooth analysis and control theory, some sufficient criteria for the global Mittag-Leffler synchronization of FNNDAs are derived by designing a suitable controller. The proposed results enrich and enhance the previous reports. Finally, one numerical example is given to demonstrate the effectiveness of the theoretical results. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 50 条
  • [1] Global Mittag-Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays
    Rifhat, Ramziya
    Muhammadhaji, Ahmadjan
    Teng, Zhidong
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 205 - 213
  • [2] Global Mittag-Leffler synchronization of delayed fractional-order memristive neural networks
    Yingjie Fan
    Xia Huang
    Zhen Wang
    Jianwei Xia
    Yuxia Li
    [J]. Advances in Difference Equations, 2018
  • [3] Global Mittag-Leffler synchronization of delayed fractional-order memristive neural networks
    Fan, Yingjie
    Huang, Xia
    Wang, Zhen
    Xia, Jianwei
    Li, Yuxia
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [4] O(t-α)-synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations
    Chen, Jiejie
    Chen, Boshan
    Zeng, Zhigang
    [J]. NEURAL NETWORKS, 2018, 100 : 10 - 24
  • [5] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Xujun Yang
    Chuandong Li
    Tingwen Huang
    Qiankun Song
    Junjian Huang
    [J]. Neural Processing Letters, 2018, 48 : 459 - 479
  • [6] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    Huang, Junjian
    [J]. NEURAL PROCESSING LETTERS, 2018, 48 (01) : 459 - 479
  • [7] Global Mittag-Leffler Stabilization of Fractional-Order Memristive Neural Networks
    Wu, Ailong
    Zeng, Zhigang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (01) : 206 - 217
  • [8] Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks
    Chen, Jiejie
    Zeng, Zhigang
    Jiang, Ping
    [J]. NEURAL NETWORKS, 2014, 51 : 1 - 8
  • [9] Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays
    Zheng, Bibo
    Wang, Zhanshan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
  • [10] Further results on Mittag-Leffler synchronization of fractional-order coupled neural networks
    Fengxian Wang
    Fang Wang
    Xinge Liu
    [J]. Advances in Difference Equations, 2021