Global Mittag-Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays

被引:11
|
作者
Rifhat, Ramziya [1 ,3 ]
Muhammadhaji, Ahmadjan [1 ,2 ]
Teng, Zhidong [1 ]
机构
[1] Xinjiang Univ Urumqi, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xinjiang Univ Urumqi, Inst Math Phys, Xinjiang Weiwuerzizhiqu 830046, Peoples R China
[3] Xinjiang Med Univ Urumqi, Coll Med Engn & Technol, Urumqi 830011, Peoples R China
基金
中国国家自然科学基金;
关键词
Global Mittag-Leffler synchronization; impulsive fractional functional differential equations; neural networks; time-varying delays; distributed delays; FINITE-TIME SYNCHRONIZATION; VARYING DELAYS; STABILITY ANALYSIS; SYSTEMS; CHAOS;
D O I
10.1515/ijnsns-2017-0179
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we investigate the synchronization problem of impulsive fractional-order neural networks with both time-varying and distributed delays. By using the fractional Lyapunov method and Mittag-Leffler function, some sufficient conditions are derived to realize the global Mittag-Leffler synchronization of impulsive fractional-order neural networks and one illustrative example is given to demonstrate the effectiveness of the obtained results.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 50 条
  • [41] Mittag-Leffler synchronization for impulsive fractional-order bidirectional associative memory neural networks via optimal linear feedback control
    Lin, Jiazhe
    Xu, Rui
    Li, Liangchen
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (02): : 207 - 226
  • [42] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
    Wang Qiao
    Ding Dong-Sheng
    Qi Dong-Lian
    [J]. CHINESE PHYSICS B, 2015, 24 (06)
  • [43] Novel Inequalities to Global Mittag-Leffler Synchronization and Stability Analysis of Fractional-Order Quaternion-Valued Neural Networks
    Xiao, Jianying
    Cao, Jinde
    Cheng, Jun
    Wen, Shiping
    Zhang, Ruimei
    Zhong, Shouming
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) : 3700 - 3709
  • [44] Global Mittag-Leffler projective synchronization of nonidentical fractional-order neural networks with delay via sliding mode control
    Chen, Jiyang
    Li, Chuandong
    Yang, Xujun
    [J]. NEUROCOMPUTING, 2018, 313 : 324 - 332
  • [45] Mittag-Leffler Stability and Global Asymptotically ω-Periodicity of Fractional-Order BAM Neural Networks with Time-Varying Delays
    Zhou, Fengyan
    Ma, Chengrong
    [J]. NEURAL PROCESSING LETTERS, 2018, 47 (01) : 71 - 98
  • [46] Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach
    Li, Hong-Li
    Zhang, Long
    Hu, Cheng
    Jiang, Haijun
    Cao, Jinde
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 373
  • [47] Asymptotic and Mittag-Leffler Synchronization of Fractional-Order Octonion-Valued Neural Networks with Neutral-Type and Mixed Delays
    Popa, Calin-Adrian
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (11)
  • [48] Extended analysis on the global Mittag-Leffler synchronization problem for fractional-order octonion-valued BAM neural networks
    Xiao, Jianying
    Guo, Xiao
    Li, Yongtao
    Wen, Shiping
    Shi, Kaibo
    Tang, Yiqian
    [J]. NEURAL NETWORKS, 2022, 154 : 491 - 507
  • [49] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    [J]. NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [50] Global Mittag-Leffler stabilization of fractional-order complex-valued memristive neural networks
    Chang, Wenting
    Zhu, Song
    Li, Jinyu
    Sun, Kaili
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 346 - 362