Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays

被引:202
|
作者
Stamova, Ivanka [1 ]
机构
[1] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
关键词
Global Mittag-Leffler stability; Synchronization; Neural networks; Fractional-order derivatives; Time-varying delays; Impulsive control; Lyapunov method; EXPONENTIAL STABILITY; FEEDBACK-CONTROL; CHAOTIC SYSTEMS; STABILIZATION; MODEL;
D O I
10.1007/s11071-014-1375-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper we consider a class of impulsive Caputo fractional-order cellular neural networks with time-varying delays. Applying the fractional Lyapunov method and Mittag-Leffler functions, we give sufficient conditions for global Mittag-Leffler stability which implies global asymptotic stability of the network equilibrium. Our results provide a design method of impulsive control law which globally asymptotically stabilizes the impulse free fractional-order neural network time-delay model. The synchronization of fractional chaotic networks via non-impulsive linear controller is also considered. Illustrative examples are given to demonstrate the effectiveness of the obtained results.
引用
收藏
页码:1251 / 1260
页数:10
相关论文
共 50 条
  • [1] Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays
    Ivanka Stamova
    [J]. Nonlinear Dynamics, 2014, 77 : 1251 - 1260
  • [2] Global Mittag-Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays
    Rifhat, Ramziya
    Muhammadhaji, Ahmadjan
    Teng, Zhidong
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 205 - 213
  • [3] Mittag-Leffler Stability and Global Asymptotically ω-Periodicity of Fractional-Order BAM Neural Networks with Time-Varying Delays
    Zhou, Fengyan
    Ma, Chengrong
    [J]. NEURAL PROCESSING LETTERS, 2018, 47 (01) : 71 - 98
  • [4] The global Mittag-Leffler synchronization problem of Caputo fractional-order inertial memristive neural networks with time-varying delays
    Yong Wang
    Jinmei Li
    [J]. Soft Computing, 2024, 28 (13-14) : 8247 - 8257
  • [5] Mittag-Leffler stability of impulsive fractional-order bi-directional associative memory neural networks with time-varying delays
    Stamova, Ivanka
    Stamov, Gani
    Simeonov, Stanislav
    Ivanov, Alexander
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (10) : 3068 - 3077
  • [6] Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays
    Zhang, Xiao-Li
    Li, Hong-Li
    Kao, Yonggui
    Zhang, Long
    Jiang, Haijun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 433
  • [7] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Xujun Yang
    Chuandong Li
    Tingwen Huang
    Qiankun Song
    Junjian Huang
    [J]. Neural Processing Letters, 2018, 48 : 459 - 479
  • [8] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    Huang, Junjian
    [J]. NEURAL PROCESSING LETTERS, 2018, 48 (01) : 459 - 479
  • [9] Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays
    Ali, M. Syed
    Narayanan, G.
    Shekher, Vineet
    Alsaedi, Ahmed
    Ahmad, Bashir
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83
  • [10] Global Mittag-Leffler Stability and Global Asymptotic ω-Period for Fractional-Order Cohen-Grossberg Neural Networks with Time-Varying Delays
    Jiang, Wangdong
    Li, Zhiying
    Zhang, Yuehong
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (12)