Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks

被引:8
|
作者
Ciylan, B. [1 ]
机构
[1] Gazi Univ, Dept Elect & Comp Educ, Fac Tech Educ, Ankara, Turkey
关键词
SEEBECK COEFFICIENT; TEST SYSTEM; MODEL; DESIGN;
D O I
10.5755/j01.eee.116.10.884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
B. Ciylan. Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks // Electronics and Electrical Engineering. - Kaunas: Technologija, 2011. - No. 10(116). - P. 63-66. Determination of instant dynamic output parameters of thermoelectric module which is worked in any system is very important. Despite of the new methods this process takes a lot of times. In this study, two artificial neural network (ANN) models are designed for the estimation of dynamic output parameters at any desired moment of the thermoelectric modules. MATLAB-ANN tools and an ANN simulator program are used for creating the models. Experimental dynamic output parameters data which obtained from eight different thermal load conditions were used for training the ANN Models. On the designed ANN models which were created to estimate instant dynamic output parameters of the thermoelectric module, the Levenberg-Marquardt (LM) learning algorithm has been used. The results obtained with these ANN models, compared with the experimental data and it was shown in graphs. III. 6, bibl. 20, tabl. 1 (in English; abstracts in English and Lithuanian).
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
  • [1] Determination of effective parameters on fragmentation using artificial neural networks
    Tarbiat Modares Uniiversity, Iran
    不详
    J Mines Met Fuels, 2009, 9 (287-290):
  • [2] Prediction of the output power of photovoltaic module using artificial neural networks model with optimizing the neurons number
    Mohammad, Abdulrahman Th.
    Hussen, Hasanen M.
    Akeiber, Hussein J.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2023, 12 (03): : 478 - 487
  • [3] Prediction of operating parameters and output power of ducted wind turbine using artificial neural networks
    Taghinezhad, Javad
    Sheidaei, Samira
    ENERGY REPORTS, 2022, 8 : 3085 - 3095
  • [4] Voltage prediction of a photovoltaic module using artificial neural networks
    Askarzadeh, Alireza
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2014, 24 (12): : 1715 - 1725
  • [5] Determination of probabilistic parameters of concrete: solving the inverse problem by using artificial neural networks
    Fairbairn, EMR
    Ebecken, NFF
    Paz, CNM
    Ulm, FJ
    COMPUTERS & STRUCTURES, 2000, 78 (1-3) : 497 - 503
  • [6] Artificial Neural Networks technique for Parameters Estimation of Amorphous Silicon Solar Module
    Benabdelkrim, Bouchra
    Ghaitaoui, Touhami
    Benatiallah, Ali
    Koussa, Khaled
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (05): : 158 - 163
  • [7] Determination of the CMSSM parameters using neural networks
    Bornhauser, Nicki
    Drees, Manuel
    PHYSICAL REVIEW D, 2013, 88 (07)
  • [8] Forecasting aquifer parameters using artificial neural networks
    Karahan, Halil
    Ayvaz, M. Tamer
    JOURNAL OF POROUS MEDIA, 2006, 9 (05) : 429 - 444
  • [9] Predicting important parameters using artificial neural networks
    Ramakumar, K. R.
    HYDROCARBON PROCESSING, 2008, 87 (10): : 81 - 83
  • [10] Modelling of Atmospheric Parameters Using Artificial Neural Networks
    Demirtas, Ozlem
    Efe, Mehmet Onder
    2019 9TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2019, : 571 - 577