Determination of effective parameters on fragmentation using artificial neural networks

被引:0
|
作者
Tarbiat Modares Uniiversity, Iran [1 ]
不详 [2 ]
机构
来源
J Mines Met Fuels | 2009年 / 9卷 / 287-290期
关键词
Blastability index - Blasting operations - Effective parameters - Empirical method - Generalized Regression Neural Network(GRNN) - Overall costs - Rock fragmentation - Spacing ratio;
D O I
暂无
中图分类号
学科分类号
摘要
One of the basic stages in open pit mining is blasting operation in which a proper fragmentation has to be reached to optimize overall costs. Therefore, determination of effective parameters on fragmentation seems to be very important. Generally, empirical methods are used to determine these parameters. However, considering complexity of blast design, these methods are not enough efficient, hence new methods have to be applied. In this research work, using artificial neural networks technique a model was developed to determine the most effective parameters on blasting fragmentation in Chadormalu iron mine of Iran. Comparing different types of networks, a four-layer generalized regression neural network (GRNN) with an architecture 7-18-2-1 was found to be optimum. Also sensitivity analysis revealed that blastability index, delay time and blast hole diameter are the most effective parameters and burden to spacing ratio, stemming, water content and powder factor are the least effective parameters on the rock fragmentation in blasting operation.
引用
收藏
相关论文
共 50 条
  • [1] Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks
    Ciylan, B.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2011, (10) : 63 - 66
  • [2] Effective parameters on conductivity of mineralized carbon nanofibers: an investigation using artificial neural networks
    Samadian, Hadi
    Zakariaee, Seyed Salman
    Adabi, Mahdi
    Mobasheri, Hamid
    Azami, Mahmoud
    Faridi-Majidi, Reza
    RSC Advances, 2016, 6 (113): : 111908 - 111918
  • [3] Determination of probabilistic parameters of concrete: solving the inverse problem by using artificial neural networks
    Fairbairn, EMR
    Ebecken, NFF
    Paz, CNM
    Ulm, FJ
    COMPUTERS & STRUCTURES, 2000, 78 (1-3) : 497 - 503
  • [4] Determination of the CMSSM parameters using neural networks
    Bornhauser, Nicki
    Drees, Manuel
    PHYSICAL REVIEW D, 2013, 88 (07)
  • [5] Forecasting aquifer parameters using artificial neural networks
    Karahan, Halil
    Ayvaz, M. Tamer
    JOURNAL OF POROUS MEDIA, 2006, 9 (05) : 429 - 444
  • [6] Predicting important parameters using artificial neural networks
    Ramakumar, K. R.
    HYDROCARBON PROCESSING, 2008, 87 (10): : 81 - 83
  • [7] Modelling of Atmospheric Parameters Using Artificial Neural Networks
    Demirtas, Ozlem
    Efe, Mehmet Onder
    2019 9TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2019, : 571 - 577
  • [8] Extraction of cloud parameters using artificial neural networks
    Cerdena, A.
    Gonzalez, A.
    Perez, J. C.
    REVISTA DE TELEDETECCION, 2005, (24): : 49 - 53
  • [9] Determination of liquefaction potential using artificial neural networks
    Farrokhzad, Farzad
    Choobbasti, Asskar Janalizadeh
    Barari, Amin
    GRADEVINAR, 2011, 63 (9-10): : 837 - 845
  • [10] An Effective Speech Emotion Recognition Using Artificial Neural Networks
    Anoop, V.
    Rao, P. V.
    Aruna, S.
    INTERNATIONAL PROCEEDINGS ON ADVANCES IN SOFT COMPUTING, INTELLIGENT SYSTEMS AND APPLICATIONS, ASISA 2016, 2018, 628 : 393 - 401