RANK-BASED TAPERING ESTIMATION OF BANDABLE CORRELATION MATRICES

被引:9
|
作者
Xue, Lingzhou [1 ]
Zou, Hui [2 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
Banding; correlation matrix; Gaussian copula; tapering; nonparanormal model; variable transformation; LARGE COVARIANCE MATRICES; EFFICIENT ESTIMATION; COPULA MODELS; REGULARIZATION;
D O I
10.5705/ss.2012.052
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The nonparanormal model assumes that variables follow a multivariate normal distribution after a set of unknown monotone increasing transformations. It is a flexible generalization of the normal model but retains the nice interpretability of the latter. In this paper we propose a rank-based tapering estimator for estimating the correlation matrix in the nonparanormal model in which the variables have a natural order. The rank-based tapering estimator does not require knowing or estimating the monotone transformation functions. We establish the rates of convergence of the rank-based tapering under Frobenius and matrix operator norms, where the dimension is allowed to grow at a nearly exponential rate relative to the sample size. Monte Carlo simulation is used to demonstrate the finite performance of the rank-based tapering estimator. A data example is used to illustrate the nonparanormal model and the efficacy of the proposed rank-based tapering estimator.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 50 条
  • [1] Minimax Estimation of Bandable Precision Matrices
    Hu, Addison J.
    Negahban, Sahand N.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] Rank-based correlation matrix estimation for high dimensional microbiome data
    Wang, Jiyang
    Liang, Wanfeng
    Li, Lijie
    Zou, Feng
    [J]. STATISTICS, 2024,
  • [3] Positive Semidefinite Rank-Based Correlation Matrix Estimation With Application to Semiparametric Graph Estimation
    Zhao, Tuo
    Roeder, Kathryn
    Liu, Han
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) : 895 - 922
  • [4] RANK-BASED ESTIMATION FOR GARCH PROCESSES
    Andrews, Beth
    [J]. ECONOMETRIC THEORY, 2012, 28 (05) : 1037 - 1064
  • [5] An intuitive general rank-based correlation coefficient
    Divya Pandove
    Shivani Goel
    Rinkle Rani
    [J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19 : 699 - 711
  • [6] An intuitive general rank-based correlation coefficient
    Pandove, Divya
    Goel, Shivani
    Rani, Rinkle
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2018, 19 (06) : 699 - 711
  • [7] Rfit: Rank-based Estimation for Linear Models
    Kloke, John D.
    McKean, Joseph W.
    [J]. R JOURNAL, 2012, 4 (02): : 57 - 64
  • [8] DYNAMIC RELIABILITY ESTIMATION IN A RANK-BASED DESIGN
    Mahdizadeh, M.
    Zamanzade, Ehsan
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2019, 39 (01): : 1 - 18
  • [9] Rank-based camera spectral sensitivity estimation
    Finlayson, Graham
    Darrodi, Maryam Mohammadzadeh
    Mackiewicz, Michal
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (04) : 589 - 599
  • [10] Minimax optimal estimation of general bandable covariance matrices
    Xue, Lingzhou
    Zou, Hui
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 45 - 51