RANK-BASED TAPERING ESTIMATION OF BANDABLE CORRELATION MATRICES

被引:9
|
作者
Xue, Lingzhou [1 ]
Zou, Hui [2 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
Banding; correlation matrix; Gaussian copula; tapering; nonparanormal model; variable transformation; LARGE COVARIANCE MATRICES; EFFICIENT ESTIMATION; COPULA MODELS; REGULARIZATION;
D O I
10.5705/ss.2012.052
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The nonparanormal model assumes that variables follow a multivariate normal distribution after a set of unknown monotone increasing transformations. It is a flexible generalization of the normal model but retains the nice interpretability of the latter. In this paper we propose a rank-based tapering estimator for estimating the correlation matrix in the nonparanormal model in which the variables have a natural order. The rank-based tapering estimator does not require knowing or estimating the monotone transformation functions. We establish the rates of convergence of the rank-based tapering under Frobenius and matrix operator norms, where the dimension is allowed to grow at a nearly exponential rate relative to the sample size. Monte Carlo simulation is used to demonstrate the finite performance of the rank-based tapering estimator. A data example is used to illustrate the nonparanormal model and the efficacy of the proposed rank-based tapering estimator.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 50 条
  • [21] General rank-based estimation for regression single index models
    Bindele, Huybrechts F.
    Abebe, Ash
    Meyer, Karlene N.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (05) : 1115 - 1146
  • [22] Pairwise rank-based likelihood for estimation and inference on the mixture proportion
    Heller, G
    Qin, J
    [J]. BIOMETRICS, 2001, 57 (03) : 813 - 817
  • [23] RANK-BASED ESTIMATION OF THE RATIO OF SCALE-PARAMETERS AND APPLICATIONS
    PADMANABHAN, AR
    PURI, ML
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 31 (01) : 23 - 49
  • [24] General rank-based estimation for regression single index models
    Huybrechts F. Bindele
    Ash Abebe
    Karlene N. Meyer
    [J]. Annals of the Institute of Statistical Mathematics, 2018, 70 : 1115 - 1146
  • [25] A spatial rank-based multivariate EWMA chart for monitoring process shape matrices
    Huwang, Longcheen
    Lin, Li-Wei
    Yu, Cheng-Ting
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (06) : 1716 - 1734
  • [26] Rank-based ordinal classification
    Serrat, Joan
    Ruiz, Idoia
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8069 - 8076
  • [27] SEMIPARAMETRIC GAUSSIAN COPULA MODELS: GEOMETRY AND EFFICIENT RANK-BASED ESTIMATION
    Segers, Johan
    van den Akker, Ramon
    Werker, Bas J. M.
    [J]. ANNALS OF STATISTICS, 2014, 42 (05): : 1911 - 1940
  • [28] Rank-based estimation for autoregressive moving average time series models
    Andrews, Beth
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2008, 29 (01) : 51 - 73
  • [29] Considerations for Rank-based Cryptosystems
    Horlemann-Trautmann, Anna -Lena
    Marshall, Kyle
    Rosenthal, Joachim
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2544 - 2548
  • [30] Rank-based estimation for all-pass time series models
    Andrews, Beth
    Davis, Richard A.
    Breidt, F. Jay
    [J]. ANNALS OF STATISTICS, 2007, 35 (02): : 844 - 869