SEMIPARAMETRIC GAUSSIAN COPULA MODELS: GEOMETRY AND EFFICIENT RANK-BASED ESTIMATION

被引:18
|
作者
Segers, Johan [1 ]
van den Akker, Ramon [2 ]
Werker, Bas J. M. [2 ]
机构
[1] Catholic Univ Louvain, ISBA, B-1348 Louvain, Belgium
[2] Tilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
来源
ANNALS OF STATISTICS | 2014年 / 42卷 / 05期
关键词
Adaptivity; correlation matrix; influence function; quadratic form; ranks; score function; tangent space; BIVARIATE SURVIVAL-DATA; GRAPHICAL MODELS; PARAMETERS; REGRESSION; INFERENCE;
D O I
10.1214/14-AOS1244
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose, for multivariate Gaussian copula models with unknown margins and structured correlation matrices, a rank-based, semiparametrically efficient estimator for the Euclidean copula parameter. This estimator is defined as a one-step update of a rank-based pilot estimator in the direction of the efficient influence function, which is calculated explicitly. Moreover, finite-dimensional algebraic conditions are given that completely characterize efficiency of the pseudo-likelihood estimator and adaptivity of the model with respect to the unknown marginal distributions. For correlation matrices structured according to a factor model, the pseudo-likelihood estimator turns out to be semiparametrically efficient. On the other hand, for Toeplitz correlation matrices, the asymptotic relative efficiency of the pseudo-likelihood estimator can be as low as 20%. These findings are confirmed by Monte Carlo simulations. We indicate how our results can be extended to joint regression models.
引用
收藏
页码:1911 / 1940
页数:30
相关论文
共 50 条
  • [1] Rank-based shrinkage estimation for identification in semiparametric additive models
    Jing Yang
    Hu Yang
    Fang Lu
    [J]. Statistical Papers, 2019, 60 : 1255 - 1281
  • [2] Rank-based shrinkage estimation for identification in semiparametric additive models
    Yang, Jing
    Yang, Hu
    Lu, Fang
    [J]. STATISTICAL PAPERS, 2019, 60 (04) : 1255 - 1281
  • [3] EFFICIENT ESTIMATION OF COPULA-BASED SEMIPARAMETRIC MARKOV MODELS
    Chen, Xiaohong
    Wu, Wei Biao
    Yi, Yanping
    [J]. ANNALS OF STATISTICS, 2009, 37 (6B): : 4214 - 4253
  • [4] Efficient estimation of semiparametric multivariate copula models
    Chen, Xiaohong
    Fan, Yanqin
    Tsyrennikov, Viktor
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (475) : 1228 - 1240
  • [5] Rank-based instrumental variable estimation for semiparametric varying coefficient spatial autoregressive models
    Tang, Yangbing
    Zhang, Zhongzhan
    Du, Jiang
    [J]. STATISTICAL PAPERS, 2024, 65 (03) : 1805 - 1839
  • [6] Efficient semiparametric copula estimation of regression models with endogeneity
    Tran, Kien C.
    Tsionas, Mike G.
    [J]. ECONOMETRIC REVIEWS, 2022, 41 (05) : 485 - 504
  • [7] Semiparametric estimation in copula models
    Tsukahara, H
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (03): : 357 - 375
  • [8] EXTENDING THE RANK LIKELIHOOD FOR SEMIPARAMETRIC COPULA ESTIMATION
    Hoff, Peter D.
    [J]. ANNALS OF APPLIED STATISTICS, 2007, 1 (01): : 265 - 283
  • [9] Efficient estimation of semiparametric copula models for bivariate survival data
    Cheng, Guang
    Zhou, Lan
    Chen, Xiaohong
    Huang, Jianhua Z.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 : 330 - 344
  • [10] Semiparametric error-correction models for cointegration with trends: Pseudo-Gaussian and optimal rank-based tests of the cointegration rank
    Hallin, Marc
    van den Akker, Ramon
    Werker, Bas J. M.
    [J]. JOURNAL OF ECONOMETRICS, 2016, 190 (01) : 46 - 61