Efficient estimation of semiparametric multivariate copula models

被引:120
|
作者
Chen, Xiaohong [1 ]
Fan, Yanqin
Tsyrennikov, Viktor
机构
[1] NYU, Dept Econ, New York, NY 10003 USA
[2] Vanderbilt Univ, Dept Econ, Nashville, TN 37235 USA
基金
英国经济与社会研究理事会; 美国国家科学基金会;
关键词
copula dependence parameter; efficiency bound; marginal distribution; prior information; sieve maximum likelihood;
D O I
10.1198/016214506000000311
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a sieve maximum likelihood estimation procedure for a broad class of semiparametric multivariate distributions. A joint distribution in this class is characterized by a parametric copula function evaluated at nonparametric marginal distributions. This class of distributions has gained popularity in diverse fields due to its flexibility in separately modeling the dependence structure and the marginal behaviors of a multivariate random variable, and its circumvention of the "curse of dimensionality" associated with purely nonparametric multivariate distributions. We show that the plug-in sieve maximum likelihood estimators (MLEs) of all smooth functionals, including the finite-dimensional copula parameters and the unknown marginal distributions, are semiparametrically efficient, and that their asymptotic variances can be estimated consistently. Moreover, prior restrictions on the marginal distributions can be easily incorporated into the sieve maximum likelihood estimation procedure to achieve further efficiency gains. Two such cases are studied: (a) the marginal distributions are equal but otherwise unspecified, and (b) some but not all marginal distributions are parametric. Monte Carlo studies indicate that the sieve MLEs perform well in finite samples, especially when prior information on the marginal distributions is incorporated.
引用
收藏
页码:1228 / 1240
页数:13
相关论文
共 50 条
  • [1] Efficient semiparametric copula estimation of regression models with endogeneity
    Tran, Kien C.
    Tsionas, Mike G.
    [J]. ECONOMETRIC REVIEWS, 2022, 41 (05) : 485 - 504
  • [2] Semiparametric estimation in copula models
    Tsukahara, H
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (03): : 357 - 375
  • [3] Efficient estimation of semiparametric copula models for bivariate survival data
    Cheng, Guang
    Zhou, Lan
    Chen, Xiaohong
    Huang, Jianhua Z.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 : 330 - 344
  • [4] EFFICIENT ESTIMATION OF COPULA-BASED SEMIPARAMETRIC MARKOV MODELS
    Chen, Xiaohong
    Wu, Wei Biao
    Yi, Yanping
    [J]. ANNALS OF STATISTICS, 2009, 37 (6B): : 4214 - 4253
  • [5] Semiparametric Conditional Quantile Estimation Through Copula-Based Multivariate Models
    Noh, Hohsuk
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2015, 33 (02) : 167 - 178
  • [6] Erratum to "Semiparametric estimation in copula models"
    Tsukahara, Hideatsu
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 734 - 735
  • [7] Semiparametric regression estimation in copula models
    Bagdonavicius, Vilijandas
    Malov, Sergey V.
    Nikulin, Mikhail S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (08) : 1449 - 1467
  • [8] Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification
    Chen, Xiaohong
    Fan, Yanqin
    [J]. JOURNAL OF ECONOMETRICS, 2006, 135 (1-2) : 125 - 154
  • [9] Efficient estimation of a semiparametric dynamic copula model
    Hafner, Christian M.
    Reznikova, Olga
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (11) : 2609 - 2627
  • [10] SEMIPARAMETRIC GAUSSIAN COPULA MODELS: GEOMETRY AND EFFICIENT RANK-BASED ESTIMATION
    Segers, Johan
    van den Akker, Ramon
    Werker, Bas J. M.
    [J]. ANNALS OF STATISTICS, 2014, 42 (05): : 1911 - 1940