Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification

被引:231
|
作者
Chen, Xiaohong
Fan, Yanqin
机构
[1] NYU, Dept Econ, New York, NY 10003 USA
[2] Vanderbilt Univ, Dept Econ, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
multivariate dynamic models; misspecified copulas; serniparametric inference; multiple model selection; mixture copulas;
D O I
10.1016/j.jeconom.2005.07.027
中图分类号
F [经济];
学科分类号
02 ;
摘要
We introduce a new class of semiparametric copula-based multivariate dynamic (SCOMDY) models, which specify the conditional mean and the conditional variance of a multivariate time series parametrically, but specify the multivariate distribution of the standardized innovation semiparametrically as a parametric copula evaluated at nonparametric marginal distributions. We first study large sample properties of the estimators of SCOMDY model parameters under a misspecified parametric copula, then propose pseudo likelihood ratio (PLR) tests for model selection between two SCOMDY models with possibly misspecified copulas, and finally develop PLR tests for model selection between more than two SCOMDY models. The limiting null distributions of the PLR tests do not depend on the estimation of conditional mean and conditional variance parameters, hence are very easy to simulate. Empirical applications to three and higher dimensional daily exchange rate series indicate that a SCOMDY model with a tail-dependent copula is generally preferred. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 154
页数:30
相关论文
共 50 条
  • [1] Semiparametric Conditional Quantile Estimation Through Copula-Based Multivariate Models
    Noh, Hohsuk
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2015, 33 (02) : 167 - 178
  • [2] Copula-based semiparametric models for multivariate time series
    Remillard, Bruno
    Papageorgiou, Nicolas
    Soustra, Frederic
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 : 30 - 42
  • [3] Estimation of copula-based semiparametric time series models
    Chen, XH
    Fan, YQ
    [J]. JOURNAL OF ECONOMETRICS, 2006, 130 (02) : 307 - 335
  • [4] EFFICIENT ESTIMATION OF COPULA-BASED SEMIPARAMETRIC MARKOV MODELS
    Chen, Xiaohong
    Wu, Wei Biao
    Yi, Yanping
    [J]. ANNALS OF STATISTICS, 2009, 37 (6B): : 4214 - 4253
  • [5] Copula-based dynamic models for multivariate time series
    Nasri, Bouchra R.
    Remillard, Bruno N.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 172 : 107 - 121
  • [6] Efficient estimation of semiparametric multivariate copula models
    Chen, Xiaohong
    Fan, Yanqin
    Tsyrennikov, Viktor
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (475) : 1228 - 1240
  • [7] Copula-based semiparametric models for spatiotemporal data
    Tang, Yanlin
    Wang, Huixia J.
    Sun, Ying
    Hering, Amanda S.
    [J]. BIOMETRICS, 2019, 75 (04) : 1156 - 1167
  • [8] Semiparametric estimation and model selection for conditional mixture copula models
    Liu, Guannan
    Long, Wei
    Yang, Bingduo
    Cai, Zongwu
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (01) : 287 - 330
  • [9] Simulated Method of Moments Estimation for Copula-Based Multivariate Models
    Oh, Dong Hwan
    Patton, Andrew J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (502) : 689 - 700
  • [10] Parametric and semiparametric approaches for copula-based regression estimation
    Ali, Alam
    Pathak, Ashok Kumar
    Arshad, Mohd
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (04): : 1141 - 1157