RANK-BASED TAPERING ESTIMATION OF BANDABLE CORRELATION MATRICES

被引:9
|
作者
Xue, Lingzhou [1 ]
Zou, Hui [2 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
Banding; correlation matrix; Gaussian copula; tapering; nonparanormal model; variable transformation; LARGE COVARIANCE MATRICES; EFFICIENT ESTIMATION; COPULA MODELS; REGULARIZATION;
D O I
10.5705/ss.2012.052
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The nonparanormal model assumes that variables follow a multivariate normal distribution after a set of unknown monotone increasing transformations. It is a flexible generalization of the normal model but retains the nice interpretability of the latter. In this paper we propose a rank-based tapering estimator for estimating the correlation matrix in the nonparanormal model in which the variables have a natural order. The rank-based tapering estimator does not require knowing or estimating the monotone transformation functions. We establish the rates of convergence of the rank-based tapering under Frobenius and matrix operator norms, where the dimension is allowed to grow at a nearly exponential rate relative to the sample size. Monte Carlo simulation is used to demonstrate the finite performance of the rank-based tapering estimator. A data example is used to illustrate the nonparanormal model and the efficacy of the proposed rank-based tapering estimator.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 50 条
  • [31] ADDENDUM TO "RANK-BASED PERSISTENCE"
    Bergomi, Mattia G.
    Vertechi, Pietro
    [J]. THEORY AND APPLICATIONS OF CATEGORIES, 2023, 39 : 444 - 446
  • [32] Rank-based Liu regression
    Mohammad Arashi
    Mina Norouzirad
    S. Ejaz Ahmed
    Bahadır Yüzbaşı
    [J]. Computational Statistics, 2018, 33 : 1525 - 1561
  • [33] Rank-based outlier detection
    Huang, Huaming
    Mehrotra, Kishan
    Mohan, Chilukuri K.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (03) : 518 - 531
  • [34] The Rank-Based Cryptography Library
    Aragon, Nicolas
    Bettaieb, Slim
    Bidoux, Loic
    Connan, Yann
    Coulaud, Jeremie
    Gaborit, Philippe
    Kominiarz, Anais
    [J]. CODE-BASED CRYPTOGRAPHY (CBCRYPTO 2021), 2022, 13150 : 22 - 41
  • [35] Rank-based variable selection
    Johnson, Brent A.
    Peng, Limin
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (03) : 241 - 252
  • [36] Rank-based Liu regression
    Arashi, Mohammad
    Norouzirad, Mina
    Ahmed, S. Ejaz
    Yuzbasi, Bahadir
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (03) : 1525 - 1561
  • [37] EFFECTIVE RANK-BASED ESTIMATION OF THE COHERENT-TO-DIFFUSE POWER RATIO
    Loellmann, Heinrich W.
    Brendel, Andreas
    Kellermann, Walter
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 955 - 959
  • [38] Rank-based choice correspondences
    Laslier, JF
    [J]. ECONOMICS LETTERS, 1996, 52 (03) : 279 - 286
  • [39] Rank-Based Radiometric Calibration
    Gong, Han
    Finlayson, Graham D.
    Darrodi, Maryam M.
    Fisher, Robert B.
    [J]. JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2018, 62 (05)
  • [40] Estimation of the inequality indices based on the well-known rank-based sampling schemes
    Rad, Najmeh Nakhaei
    Salehi, Mahdi
    Mehrali, Yaser
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) : 5308 - 5322