Minimax optimal estimation of general bandable covariance matrices

被引:5
|
作者
Xue, Lingzhou [1 ]
Zou, Hui [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Adaptive minimax; Covariance matrix; Minimax optimal rates; Frobenius norm; Spectral norm; Tapering; REGULARIZATION; CONVERGENCE; RATES;
D O I
10.1016/j.jmva.2012.11.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cai et al. (2010) [4] have studied the minimax optimal estimation of a collection of large bandable covariance matrices whose off-diagonal entries decay to zero at a polynomial rate. They have shown that the minimax optimal procedures are fundamentally different under Frobenius and spectral norms, regardless of the rate of polynomial decay. To gain more insight into this interesting problem, we study minimax estimation of large bandable covariance matrices over a parameter space characterized by a general positive decay function. We obtain explicit results to show how the decay function determines the minimax rates of convergence and the optimal procedures. From the general minimax analysis we find that for certain decay functions there is a tapering estimator that simultaneously attains the minimax optimal rates of convergence under the two norms. Moreover, we show that under the ultra-high dimension scenario it is possible to achieve adaptive minimax optimal estimation under the spectral norm. These new findings complement previous work. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条
  • [1] Minimax Estimation of Bandable Precision Matrices
    Hu, Addison J.
    Negahban, Sahand N.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] MINIMAX ESTIMATION OF LARGE PRECISION MATRICES WITH BANDABLE CHOLESKY FACTOR
    Liu, Yu
    Ren, Zhao
    [J]. ANNALS OF STATISTICS, 2020, 48 (04): : 2428 - 2454
  • [3] Minimax optimal estimation of high-dimensional sparse covariance matrices with missing data
    Qi, Xinyu
    Wang, Jinru
    Zeng, Xiaochen
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (06)
  • [4] Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data
    Cai, T. Tony
    Zhang, Anru
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 150 : 55 - 74
  • [5] Optimal Bayesian Minimax Rates for Unconstrained Large Covariance Matrices
    Lee, Kyoungjae
    Lee, Jaeyong
    [J]. BAYESIAN ANALYSIS, 2018, 13 (04): : 1211 - 1229
  • [6] Minimax covariance estimation using commutator subgroup of lower triangular matrices
    Tsukuma, Hisayuki
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 124 : 333 - 344
  • [7] Estimation of conditional mean operator under the bandable covariance structure
    Lee, Kwangmin
    Lee, Kyoungjae
    Lee, Jaeyong
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 1253 - 1302
  • [8] MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER l1-NORM
    Cai, T. Tony
    Zhou, Harrison H.
    [J]. STATISTICA SINICA, 2012, 22 (04) : 1319 - 1349
  • [9] RANK-BASED TAPERING ESTIMATION OF BANDABLE CORRELATION MATRICES
    Xue, Lingzhou
    Zou, Hui
    [J]. STATISTICA SINICA, 2014, 24 (01) : 83 - 100
  • [10] MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER l1-NORM COMMENT
    Sun, Tingni
    Zhang, Cun-Hui
    [J]. STATISTICA SINICA, 2012, 22 (04) : 1354 - 1358