Minimax optimal estimation of general bandable covariance matrices

被引:5
|
作者
Xue, Lingzhou [1 ]
Zou, Hui [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Adaptive minimax; Covariance matrix; Minimax optimal rates; Frobenius norm; Spectral norm; Tapering; REGULARIZATION; CONVERGENCE; RATES;
D O I
10.1016/j.jmva.2012.11.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cai et al. (2010) [4] have studied the minimax optimal estimation of a collection of large bandable covariance matrices whose off-diagonal entries decay to zero at a polynomial rate. They have shown that the minimax optimal procedures are fundamentally different under Frobenius and spectral norms, regardless of the rate of polynomial decay. To gain more insight into this interesting problem, we study minimax estimation of large bandable covariance matrices over a parameter space characterized by a general positive decay function. We obtain explicit results to show how the decay function determines the minimax rates of convergence and the optimal procedures. From the general minimax analysis we find that for certain decay functions there is a tapering estimator that simultaneously attains the minimax optimal rates of convergence under the two norms. Moreover, we show that under the ultra-high dimension scenario it is possible to achieve adaptive minimax optimal estimation under the spectral norm. These new findings complement previous work. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条
  • [41] Estimation of noise covariance matrices for periodic systems
    Simandl, Miroslav
    Dunik, Jindrich
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2011, 25 (10) : 928 - 942
  • [42] Estimation for the Linear Model With Uncertain Covariance Matrices
    Zachariah, Dave
    Shariati, Nafiseh
    Bengtsson, Mats
    Jansson, Magnus
    Chatterjee, Saikat
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (06) : 1525 - 1535
  • [43] Efficient nonparametric estimation of Toeplitz covariance matrices
    Klockmann, K.
    Krivobokova, T.
    [J]. BIOMETRIKA, 2024, 111 (03) : 843 - 864
  • [44] ESTIMATION OF SINGULAR COVARIANCE MATRICES OF RANDOM EFFECTS
    HENDERSON, CR
    [J]. JOURNAL OF DAIRY SCIENCE, 1986, 69 (09) : 2379 - 2385
  • [45] ESTIMATION OF STRUCTURED COVARIANCE MATRICES FOR TOMOSAR FOCUSING
    Martin-del-Campo-Becerra, Gustavo Daniel
    Torres-Garcia, Eduardo
    Nannini, Matteo
    Reigber, Andreas
    Torres-Roman, Deni Librado
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7937 - 7940
  • [46] ESTIMATION OF COVARIANCE MATRICES WITH A KNOWN LINEAR STRUCTURE
    ANDERSON, TW
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (03): : 530 - &
  • [47] ESTIMATION OF SPACE-VARYING COVARIANCE MATRICES
    Barata, Catarina
    Lemos, Joao M.
    Marques, Jorge S.
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 4003 - 4007
  • [48] An overview of the estimation of large covariance and precision matrices
    Fan, Jianqing
    Liao, Yuan
    Liu, Han
    [J]. ECONOMETRICS JOURNAL, 2016, 19 (01): : C1 - C32
  • [49] Estimators of covariance matrices in Msplit(q) estimation
    Wisniewski, Z.
    Zienkiewicz, M. H.
    [J]. SURVEY REVIEW, 2021, 53 (378) : 263 - 279
  • [50] EFFICIENT DISTRIBUTED ESTIMATION OF INVERSE COVARIANCE MATRICES
    Arroyo, Jesus
    Hou, Elizabeth
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,