Minimax optimal estimation of general bandable covariance matrices

被引:5
|
作者
Xue, Lingzhou [1 ]
Zou, Hui [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Adaptive minimax; Covariance matrix; Minimax optimal rates; Frobenius norm; Spectral norm; Tapering; REGULARIZATION; CONVERGENCE; RATES;
D O I
10.1016/j.jmva.2012.11.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cai et al. (2010) [4] have studied the minimax optimal estimation of a collection of large bandable covariance matrices whose off-diagonal entries decay to zero at a polynomial rate. They have shown that the minimax optimal procedures are fundamentally different under Frobenius and spectral norms, regardless of the rate of polynomial decay. To gain more insight into this interesting problem, we study minimax estimation of large bandable covariance matrices over a parameter space characterized by a general positive decay function. We obtain explicit results to show how the decay function determines the minimax rates of convergence and the optimal procedures. From the general minimax analysis we find that for certain decay functions there is a tapering estimator that simultaneously attains the minimax optimal rates of convergence under the two norms. Moreover, we show that under the ultra-high dimension scenario it is possible to achieve adaptive minimax optimal estimation under the spectral norm. These new findings complement previous work. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条
  • [21] Partial estimation of covariance matrices
    Levina, Elizaveta
    Vershynin, Roman
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (3-4) : 405 - 419
  • [22] ESTIMATION OF STRUCTURED COVARIANCE MATRICES
    BURG, JP
    LUENBERGER, DG
    WENGER, DL
    [J]. PROCEEDINGS OF THE IEEE, 1982, 70 (09) : 963 - 974
  • [23] Structure of optimal input covariance matrices for MIMO systems with covariance feedback under general correlated fading
    Bjelakovic, Igor
    Boche, Holger
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 1041 - +
  • [24] Minimax estimation of covariance and precision matrices for high-dimensional time series with long-memory
    Zhang, Qihu
    Park, Cheolwoo
    Chung, Jongik
    [J]. STATISTICS & PROBABILITY LETTERS, 2021, 177
  • [25] Methods for minimax estimation under elementwise covariance uncertainty
    E. N. Platonov
    K. V. Semenikhin
    [J]. Automation and Remote Control, 2016, 77 : 817 - 838
  • [26] Methods for minimax estimation under elementwise covariance uncertainty
    Platonov, E. N.
    Semenikhin, K. V.
    [J]. AUTOMATION AND REMOTE CONTROL, 2016, 77 (05) : 817 - 838
  • [27] ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES
    Fan, Jianqing
    Rigollet, Philippe
    Wang, Weichen
    [J]. ANNALS OF STATISTICS, 2015, 43 (06): : 2706 - 2737
  • [28] ESTIMATION OF DIAGONAL COVARIANCE MATRICES BY MINQUE
    BROWN, KG
    [J]. COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1977, 6 (05): : 471 - 484
  • [29] MCMC Estimation of Restricted Covariance Matrices
    Chan, Joshua Chi-Chun
    Jeliazkov, Ivan
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (02) : 457 - 480
  • [30] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    [J]. ANNALS OF STATISTICS, 2008, 36 (01): : 199 - 227