ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES

被引:13
|
作者
Fan, Jianqing [1 ]
Rigollet, Philippe [2 ]
Wang, Weichen [1 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
来源
ANNALS OF STATISTICS | 2015年 / 43卷 / 06期
基金
美国国家科学基金会;
关键词
Covariance matrix; functional estimation; high-dimensional testing; minimax; elbow effect; OPTIMAL ADAPTIVE ESTIMATION; OPTIMAL RATES; PRINCIPAL-COMPONENTS; HIGH DIMENSION; CONVERGENCE; PCA; EQUILIBRIUM; CONSISTENCY; SHARP;
D O I
10.1214/15-AOS1357
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other l(r) norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.
引用
收藏
页码:2706 / 2737
页数:32
相关论文
共 50 条
  • [1] Optimal estimation and rank detection for sparse spiked covariance matrices
    Cai, Tony
    Ma, Zongming
    Wu, Yihong
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2015, 161 (3-4) : 781 - 815
  • [2] Optimal estimation and rank detection for sparse spiked covariance matrices
    Tony Cai
    Zongming Ma
    Yihong Wu
    [J]. Probability Theory and Related Fields, 2015, 161 : 781 - 815
  • [3] EiGLasso: Scalable Estimation of Cartesian Product of Sparse Inverse Covariance Matrices
    Yoon, Jun Ho
    Kim, Seyoung
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 1248 - 1257
  • [4] SPARSE ESTIMATION OF LARGE COVARIANCE MATRICES VIA A NESTED LASSO PENALTY
    Levina, Elizaveta
    Rothman, Adam
    Zhu, Ji
    [J]. ANNALS OF APPLIED STATISTICS, 2008, 2 (01): : 245 - 263
  • [5] A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
    Maurya, Ashwini
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [6] ESTIMATION OF COVARIANCE MATRICES
    KOSHEVOY, VM
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (10): : 1964 - 1974
  • [7] Factored sparse inverse covariance matrices
    Bilmes, JA
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 1009 - 1012
  • [8] Lower bound estimation for a family of high-dimensional sparse covariance matrices
    Li, Huimin
    Liu, Youming
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (02)
  • [9] On the role of ML estimation and Bregman divergences in sparse representation of covariance and precision matrices
    Brkljac, Branko
    Trpovski, Zeljen
    [J]. 2018 26TH TELECOMMUNICATIONS FORUM (TELFOR), 2018, : 361 - 368
  • [10] OPERATOR NORM CONSISTENT ESTIMATION OF LARGE-DIMENSIONAL SPARSE COVARIANCE MATRICES
    El Karoui, Noureddine
    [J]. ANNALS OF STATISTICS, 2008, 36 (06): : 2717 - 2756