Lower bound estimation for a family of high-dimensional sparse covariance matrices

被引:0
|
作者
Li, Huimin [1 ]
Liu, Youming [1 ]
机构
[1] Beijing Univ Technol, Dept Appl Math, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Minimax risk; lower bound estimation; Kullback-Leibler divergence; affinity; mixture probability measure; sparse covariance matrix; PRECISION MATRICES; OPTIMAL RATES;
D O I
10.1142/S0219691323500455
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Lower bound estimation plays an important role for establishing the minimax risk. A key step in lower bound estimation is deriving a lower bound of the affinity between two probability measures. This paper provides a simple method to estimate the affinity between mixture probability measures. Then we apply the lower bound of the affinity to establish the minimax lower bound for a family of sparse covariance matrices, which contains Cai-Ren-Zhou's theorem in [T. Cai, Z. Ren and H. Zhou, Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation, Electron. J. Stat. 10(1) (2016) 1-59] as a special example.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Optimal estimation of high-dimensional sparse covariance matrices with missing data
    Miao, Li
    Wang, Jinru
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [2] Sparse Estimation of High-Dimensional Inverse Covariance Matrices with Explicit Eigenvalue Constraints
    Yun-Hai Xiao
    Pei-Li Li
    Sha Lu
    Journal of the Operations Research Society of China, 2021, 9 : 543 - 568
  • [3] Minimax optimal estimation of high-dimensional sparse covariance matrices with missing data
    Qi, Xinyu
    Wang, Jinru
    Zeng, Xiaochen
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (06)
  • [4] Sparse Estimation of High-Dimensional Inverse Covariance Matrices with Explicit Eigenvalue Constraints
    Xiao, Yun-Hai
    Li, Pei-Li
    Lu, Sha
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2021, 9 (03) : 543 - 568
  • [5] Sparse estimation of high-dimensional correlation matrices
    Cui, Ying
    Leng, Chenlei
    Sun, Defeng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 390 - 403
  • [6] Sparse covariance matrix estimation in high-dimensional deconvolution
    Belomestny, Denis
    Trabs, Mathias
    Tsybakov, Alexandre B.
    BERNOULLI, 2019, 25 (03) : 1901 - 1938
  • [7] Nonasymptotic support recovery for high-dimensional sparse covariance matrices
    Kashlak, Adam B.
    Kong, Linglong
    STAT, 2021, 10 (01):
  • [8] HIGH-DIMENSIONAL SPARSE BAYESIAN LEARNING WITHOUT COVARIANCE MATRICES
    Lin, Alexander
    Song, Andrew H.
    Bilgic, Berkin
    Ba, Demba
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1511 - 1515
  • [9] HIGH-DIMENSIONAL SPARSE COVARIANCE ESTIMATION FOR RANDOM SIGNALS
    Nasif, Ahmed O.
    Tian, Zhi
    Ling, Qing
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 4658 - 4662
  • [10] Robust estimation of high-dimensional covariance and precision matrices
    Avella-Medina, Marco
    Battey, Heather S.
    Fan, Jianqing
    Li, Quefeng
    BIOMETRIKA, 2018, 105 (02) : 271 - 284