Robust estimation of high-dimensional covariance and precision matrices

被引:54
|
作者
Avella-Medina, Marco [1 ]
Battey, Heather S. [2 ]
Fan, Jianqing [3 ]
Li, Quefeng [4 ]
机构
[1] MIT, Sloan Sch Management, 30 Mem Dr, Cambridge, MA 02142 USA
[2] Imperial Coll London, Dept Math, 545 Huxley Bldg,South Kensington Campus, London SW7 2AZ, England
[3] Princeton Univ, Dept Operat Res & Financial Engn, 205 Sherred Hall, Princeton, NJ 08540 USA
[4] Univ N Carolina, Dept Biostat, 3105D McGavran Greenberg Hall, Chapel Hill, NC 27599 USA
基金
瑞士国家科学基金会; 美国国家卫生研究院; 英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Constrained l(1)-minimization; Leptokurtosis; Minimax rate; Robustness; Thresholding; REGULARIZATION;
D O I
10.1093/biomet/asy011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-dimensional data are often most plausibly generated from distributions with complex structure and leptokurtosis in some or all components. Covariance and precision matrices provide a useful summary of such structure, yet the performance of popular matrix estimators typically hinges upon a sub-Gaussianity assumption. This paper presents robust matrix estimators whose performance is guaranteed for a much richer class of distributions. The proposed estimators, under a bounded fourth moment assumption, achieve the same minimax convergence rates as do existing methods under a sub-Gaussianity assumption. Consistency of the proposed estimators is also established under the weak assumption of bounded 2 + epsilon moments for epsilon is an element of (0, 2). The associated convergence rates depend on epsilon.
引用
收藏
页码:271 / 284
页数:14
相关论文
共 50 条
  • [1] Robust Shrinkage Estimation of High-Dimensional Covariance Matrices
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4097 - 4107
  • [2] A novel robust estimation for high-dimensional precision matrices
    Wang, Shaoxin
    Xie, Chaoping
    Kang, Xiaoning
    [J]. STATISTICS IN MEDICINE, 2023, 42 (05) : 656 - 675
  • [3] A robust test for sphericity of high-dimensional covariance matrices
    Tian, Xintao
    Lu, Yuting
    Li, Weiming
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 141 : 217 - 227
  • [4] Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation
    Cai, T. Tony
    Ren, Zhao
    Zhou, Harrison H.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1 - 59
  • [5] Element Aggregation for Estimation of High-Dimensional Covariance Matrices
    Yang, Jingying
    [J]. MATHEMATICS, 2024, 12 (07)
  • [6] Group Lasso Estimation of High-dimensional Covariance Matrices
    Bigot, Jeremie
    Biscay, Rolando J.
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3187 - 3225
  • [7] Parallel computation of high-dimensional robust correlation and covariance matrices
    Chilson, James
    Ng, Raymond
    Wagner, Alan
    Zamar, Ruben
    [J]. ALGORITHMICA, 2006, 45 (03) : 403 - 431
  • [8] Robust estimation of a high-dimensional integrated covariance matrix
    Morimoto, Takayuki
    Nagata, Shuichi
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 1102 - 1112
  • [9] Parallel Computation of High-Dimensional Robust Correlation and Covariance Matrices
    James Chilson
    Raymond Ng
    Alan Wagner
    Ruben Zamar
    [J]. Algorithmica, 2006, 45 : 403 - 431
  • [10] Robust tests of the equality of two high-dimensional covariance matrices
    Zi, Xuemin
    Chen, Hui
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (10) : 3120 - 3141