Robust estimation of high-dimensional covariance and precision matrices

被引:54
|
作者
Avella-Medina, Marco [1 ]
Battey, Heather S. [2 ]
Fan, Jianqing [3 ]
Li, Quefeng [4 ]
机构
[1] MIT, Sloan Sch Management, 30 Mem Dr, Cambridge, MA 02142 USA
[2] Imperial Coll London, Dept Math, 545 Huxley Bldg,South Kensington Campus, London SW7 2AZ, England
[3] Princeton Univ, Dept Operat Res & Financial Engn, 205 Sherred Hall, Princeton, NJ 08540 USA
[4] Univ N Carolina, Dept Biostat, 3105D McGavran Greenberg Hall, Chapel Hill, NC 27599 USA
基金
瑞士国家科学基金会; 美国国家科学基金会; 英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
Constrained l(1)-minimization; Leptokurtosis; Minimax rate; Robustness; Thresholding; REGULARIZATION;
D O I
10.1093/biomet/asy011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-dimensional data are often most plausibly generated from distributions with complex structure and leptokurtosis in some or all components. Covariance and precision matrices provide a useful summary of such structure, yet the performance of popular matrix estimators typically hinges upon a sub-Gaussianity assumption. This paper presents robust matrix estimators whose performance is guaranteed for a much richer class of distributions. The proposed estimators, under a bounded fourth moment assumption, achieve the same minimax convergence rates as do existing methods under a sub-Gaussianity assumption. Consistency of the proposed estimators is also established under the weak assumption of bounded 2 + epsilon moments for epsilon is an element of (0, 2). The associated convergence rates depend on epsilon.
引用
收藏
页码:271 / 284
页数:14
相关论文
共 50 条
  • [41] Hypothesis testing for the identity of high-dimensional covariance matrices
    Qian, Manling
    Tao, Li
    Li, Erqian
    Tian, Maozai
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 161
  • [42] Testing the equality of multiple high-dimensional covariance matrices
    Shen, Jieqiong
    [J]. Results in Applied Mathematics, 2022, 15
  • [43] TWO SAMPLE TESTS FOR HIGH-DIMENSIONAL COVARIANCE MATRICES
    Li, Jun
    Chen, Song Xi
    [J]. ANNALS OF STATISTICS, 2012, 40 (02): : 908 - 940
  • [44] Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data
    Cai, T. Tony
    Zhang, Anru
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 150 : 55 - 74
  • [45] ADAPTIVE TESTS FOR BANDEDNESS OF HIGH-DIMENSIONAL COVARIANCE MATRICES
    Wang, Xiaoyi
    Xu, Gongjun
    Zheng, Shurong
    [J]. STATISTICA SINICA, 2023, 33 : 1673 - 1696
  • [46] Testing proportionality of two high-dimensional covariance matrices
    Cheng, Guanghui
    Liu, Baisen
    Tian, Guoliang
    Zheng, Shurong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [47] High-Dimensional Dynamic Covariance Matrices With Homogeneous Structure
    Ke, Yuan
    Lian, Heng
    Zhang, Wenyang
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (01) : 96 - 110
  • [48] On the efficient low cost procedure for estimation of high-dimensional prediction error covariance matrices
    Hoang, Hong Son
    Baraille, Remy
    [J]. AUTOMATICA, 2017, 83 : 317 - 330
  • [49] HIGH-DIMENSIONAL COVARIANCE MATRICES UNDER DYNAMIC VOLATILITY MODELS: ASYMPTOTICS AND SHRINKAGE ESTIMATION
    Ding, Yi
    Zheng, Xinghua
    [J]. ANNALS OF STATISTICS, 2024, 52 (03): : 1027 - 1049
  • [50] Improved Calibration of High-Dimensional Precision Matrices
    Zhang, Mengyi
    Rubio, Francisco
    Palomar, Daniel P.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (06) : 1509 - 1519