Estimation of noise covariance matrices for periodic systems

被引:8
|
作者
Simandl, Miroslav [1 ]
Dunik, Jindrich [1 ]
机构
[1] Univ W Bohemia, Dept Cybernet, Fac Sci Appl, Univ 8, Plzen 30614, Czech Republic
关键词
stochastic systems; periodic systems; state estimation; estimation theory; noise covariance matrices estimation; LEAST-SQUARES METHOD; IDENTIFICATION;
D O I
10.1002/acs.1255
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Estimation of the noise covariance matrices for linear time-variant stochastic dynamic periodic systems is treated. The novel offline method for estimation of the covariance matrices of the state and measurement noises is designed. The method is based on analysis of second-order statistics of the state estimate produced by the linear multi-step predictor. The estimates of the noise covariance matrices are unbiased and converge to the true values with increasing number of data. The theoretical results are illustrated in numerical examples. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:928 / 942
页数:15
相关论文
共 50 条
  • [1] Estimation of Noise Covariance Matrices for Linear Systems with Nonlinear Measurements
    Dunik, Jindrich
    Straka, Ondrej
    Simandl, Miroslav
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 1130 - 1135
  • [2] Maximum likelihood estimation of noise covariance matrices for state estimation of autonomous hybrid systems
    Bavdekar, Vinay A.
    Nandola, Naresh N.
    Patwardhan, Sachin C.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2016, 94 : 28 - 44
  • [3] Noise Covariance Matrices Estimation for Systems with Time-Varying Availability of Sensors
    Kost, Oliver
    Dunik, Jindrich
    Straka, Ondrej
    [J]. 13TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2016), 2017, 783
  • [4] Moving Horizon Estimation for Stochastic Descriptor Systems With Inaccurate Noise Covariance Matrices
    Niu, Yichun
    Sheng, Li
    Gao, Ming
    Zhou, Donghua
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (08) : 9530 - 9540
  • [5] Distributed Noise Covariance Matrices Estimation in Sensor Networks
    Li, Jiahong
    Ma, Nan
    Deng, Fang
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1158 - 1163
  • [6] Moving Horizon Fault Estimation for Nonlinear Stochastic Systems With Unknown Noise Covariance Matrices
    Sheng, Li
    Liu, Shiyang
    Gao, Ming
    Huai, Wuxiang
    Zhou, Donghua
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [7] Moving Horizon Fault Estimation for Nonlinear Stochastic Systems With Unknown Noise Covariance Matrices
    Sheng, Li
    Liu, Shiyang
    Gao, Ming
    Huai, Wuxiang
    Zhou, Donghua
    [J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73 : 1 - 13
  • [8] Feasible Generalized Least Squares Estimation of Channel and Noise Covariance Matrices for MIMO Systems
    Ammari, Mohamed Lassaad
    Fortier, Paul
    El Khaled, Mohamad
    [J]. CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2016, 39 (01): : 42 - 50
  • [9] Measurement Difference Autocovariance Method for Noise Covariance Matrices Estimation
    Dunik, Jindrich
    Straka, Ondrej
    Kost, Oliver
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 365 - 370
  • [10] ESTIMATION OF COVARIANCE MATRICES
    KOSHEVOY, VM
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (10): : 1964 - 1974