Minimax Estimation of Bandable Precision Matrices

被引:0
|
作者
Hu, Addison J. [1 ]
Negahban, Sahand N. [1 ]
机构
[1] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06520 USA
关键词
OPTIMAL RATES; COVARIANCE; CONVERGENCE; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The inverse covariance matrix provides considerable insight for understanding statistical models in the multivariate setting. In particular, when the distribution over variables is assumed to be multivariate normal, the sparsity pattern in the inverse covariance matrix, commonly referred to as the precision matrix, corresponds to the adjacency matrix representation of the Gauss-Markov graph, which encodes conditional independence statements between variables. Minimax results under the spectral norm have previously been established for covariance matrices, both sparse and banded, and for sparse precision matrices. We establish minimax estimation bounds for estimating banded precision matrices under the spectral norm. Our results greatly improve upon the existing bounds; in particular, we find that the minimax rate for estimating banded precision matrices matches that of estimating banded covariance matrices. The key insight in our analysis is that we are able to obtain barely-noisy estimates of k X k subblocks of the precision matrix by inverting slightly wider blocks of the empirical covariance matrix along the diagonal. Our theoretical results are complemented by experiments demonstrating the sharpness of our bounds.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] MINIMAX ESTIMATION OF LARGE PRECISION MATRICES WITH BANDABLE CHOLESKY FACTOR
    Liu, Yu
    Ren, Zhao
    [J]. ANNALS OF STATISTICS, 2020, 48 (04): : 2428 - 2454
  • [2] Minimax optimal estimation of general bandable covariance matrices
    Xue, Lingzhou
    Zou, Hui
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 45 - 51
  • [3] Minimax Estimation of Laplacian Constrained Precision Matrices
    Ying, Jiaxi
    Cardoso, Jose Vinicius de Miranda
    Palomar, Daniel
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [4] RANK-BASED TAPERING ESTIMATION OF BANDABLE CORRELATION MATRICES
    Xue, Lingzhou
    Zou, Hui
    [J]. STATISTICA SINICA, 2014, 24 (01) : 83 - 100
  • [5] Efficient Minimax Estimation of a Class of High-Dimensional Sparse Precision Matrices
    Chen, Xiaohui
    Kim, Young-Heon
    Wang, Z. Jane
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2899 - 2912
  • [6] IMPROVED MINIMAX ESTIMATORS OF NORMAL CONVARIANCE AND PRECISION MATRICES
    GUPTA, AK
    OFORINYARKO, S
    [J]. STATISTICS, 1995, 26 (01) : 19 - 25
  • [7] Minimax estimation of covariance and precision matrices for high-dimensional time series with long-memory
    Zhang, Qihu
    Park, Cheolwoo
    Chung, Jongik
    [J]. STATISTICS & PROBABILITY LETTERS, 2021, 177
  • [8] IMPROVED MINIMAX ESTIMATION OF A NORMAL PRECISION MATRIX
    KRISHNAMOORTHY, K
    GUPTA, AK
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (01): : 91 - 102
  • [9] Joint estimation of precision matrices in heterogeneous populations
    Saegusa, Takumi
    Shojaie, Ali
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1341 - 1392
  • [10] An overview of the estimation of large covariance and precision matrices
    Fan, Jianqing
    Liao, Yuan
    Liu, Han
    [J]. ECONOMETRICS JOURNAL, 2016, 19 (01): : C1 - C32