Minimax Estimation of Bandable Precision Matrices

被引:0
|
作者
Hu, Addison J. [1 ]
Negahban, Sahand N. [1 ]
机构
[1] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06520 USA
关键词
OPTIMAL RATES; COVARIANCE; CONVERGENCE; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The inverse covariance matrix provides considerable insight for understanding statistical models in the multivariate setting. In particular, when the distribution over variables is assumed to be multivariate normal, the sparsity pattern in the inverse covariance matrix, commonly referred to as the precision matrix, corresponds to the adjacency matrix representation of the Gauss-Markov graph, which encodes conditional independence statements between variables. Minimax results under the spectral norm have previously been established for covariance matrices, both sparse and banded, and for sparse precision matrices. We establish minimax estimation bounds for estimating banded precision matrices under the spectral norm. Our results greatly improve upon the existing bounds; in particular, we find that the minimax rate for estimating banded precision matrices matches that of estimating banded covariance matrices. The key insight in our analysis is that we are able to obtain barely-noisy estimates of k X k subblocks of the precision matrix by inverting slightly wider blocks of the empirical covariance matrix along the diagonal. Our theoretical results are complemented by experiments demonstrating the sharpness of our bounds.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Minimax problems with bitonic matrices
    Hochbaum, DS
    Tucker, PA
    [J]. NETWORKS, 2002, 40 (03) : 113 - 124
  • [22] MINIMAX AND INTERLACING THEOREMS FOR MATRICES
    CARLSON, D
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 54 (OCT) : 153 - 172
  • [23] JOINT ESTIMATION OF MULTIPLE HIGH-DIMENSIONAL PRECISION MATRICES
    Cai, T. Tony
    Li, Hongzhe
    Liu, Weidong
    Xie, Jichun
    [J]. STATISTICA SINICA, 2016, 26 (02) : 445 - 464
  • [24] A novel robust estimation for high-dimensional precision matrices
    Wang, Shaoxin
    Xie, Chaoping
    Kang, Xiaoning
    [J]. STATISTICS IN MEDICINE, 2023, 42 (05) : 656 - 675
  • [25] Minimax optimal estimation of high-dimensional sparse covariance matrices with missing data
    Qi, Xinyu
    Wang, Jinru
    Zeng, Xiaochen
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (06)
  • [26] Robust estimation of high-dimensional covariance and precision matrices
    Avella-Medina, Marco
    Battey, Heather S.
    Fan, Jianqing
    Li, Quefeng
    [J]. BIOMETRIKA, 2018, 105 (02) : 271 - 284
  • [27] MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER l1-NORM COMMENT
    Sun, Tingni
    Zhang, Cun-Hui
    [J]. STATISTICA SINICA, 2012, 22 (04) : 1354 - 1358
  • [28] Minimax estimation of the common variance and precision of two normal populations with ordered restricted means
    Patra, Lakshmi Kanta
    Kayal, Suchandan
    Kumar, Somesh
    [J]. STATISTICAL PAPERS, 2021, 62 (01) : 209 - 233
  • [29] Minimax estimation of the common variance and precision of two normal populations with ordered restricted means
    Lakshmi Kanta Patra
    Suchandan Kayal
    Somesh Kumar
    [J]. Statistical Papers, 2021, 62 : 209 - 233
  • [30] Blind minimax estimation
    Ben-Haim, Zvika
    Eldar, Yonina C.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (09) : 3145 - 3157