Variable selection in linear regression

被引:80
|
作者
Lindsey, Charles [1 ]
Sheather, Simon [2 ]
机构
[1] StataCorp, College Stn, TX USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
来源
STATA JOURNAL | 2010年 / 10卷 / 04期
关键词
st0213; vselect; variable selection; regress; nestreg; MODEL SELECTION;
D O I
10.1177/1536867X1101000407
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We present a new Stata program, vselect, that helps users perform variable selection after performing a linear regression. Options for stepwise methods such as forward selection and backward elimination are provided. The user may specify Mallows's C-p, Akaike's information criterion, Akaike's corrected information criterion, Bayesian information criterion, or R-2 adjusted as the information criterion for the selection. When the user specifies the best subset option, the leaps-and-bounds algorithm (Furnival and Wilson, Technometrics 16: 499-511) is used to determine the best subsets of each predictor size. All the previously mentioned information criteria are reported for each of these subsets. We also provide options for doing variable selection only on certain predictors (as in [R] nestreg) and support for weighted linear regression. All options are demonstrated on real datasets with varying numbers of predictors.
引用
收藏
页码:650 / 669
页数:20
相关论文
共 50 条
  • [11] Exhaustive Search for Sparse Variable Selection in Linear Regression
    Igarashi, Yasuhiko
    Takenaka, Hikaru
    Nakanishi-Ohno, Yoshinori
    Uemura, Makoto
    Ikeda, Shiro
    Okada, Masato
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (04)
  • [12] Estimation and variable selection for partial functional linear regression
    Tang, Qingguo
    Jin, Peng
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (04) : 475 - 501
  • [13] Non-linear variable selection in a regression context
    Hill, Simon I.
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2007, : 441 - 445
  • [14] Estimation and variable selection for partial functional linear regression
    Qingguo Tang
    Peng Jin
    [J]. AStA Advances in Statistical Analysis, 2019, 103 : 475 - 501
  • [15] Objective Bayesian variable selection in linear regression model
    Kang, Sang Gil
    Kim, Dal Ho
    Lee, Woo Dong
    Kim, Yongku
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (06) : 1133 - 1157
  • [16] Variable Selection Linear Regression for Robust Speech Recognition
    Tsao, Yu
    Hu, Ting-Yao
    Sakti, Sakriani
    Nakamura, Satoshi
    Lee, Lin-shan
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (06) : 1477 - 1487
  • [17] A FAST PROCEDURE OF VARIABLE SELECTION IN LINEAR REGRESSION MODEL
    安柏庆
    [J]. Journal of Systems Science & Complexity, 1989, (03) : 266 - 274
  • [18] A stepwise AIC method for variable selection in linear regression
    Yamashita, Toshie
    Yamashita, Keizo
    Kamimura, Ryotaro
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (13-16) : 2395 - 2403
  • [19] Robust Bayesian nonparametric variable selection for linear regression
    Cabezas, Alberto
    Battiston, Marco
    Nemeth, Christopher
    [J]. STAT, 2024, 13 (02):
  • [20] Bayesian structured variable selection in linear regression models
    Min Wang
    Xiaoqian Sun
    Tao Lu
    [J]. Computational Statistics, 2015, 30 : 205 - 229