Exhaustive Search for Sparse Variable Selection in Linear Regression

被引:34
|
作者
Igarashi, Yasuhiko [1 ,2 ,3 ]
Takenaka, Hikaru [2 ]
Nakanishi-Ohno, Yoshinori [1 ,4 ]
Uemura, Makoto [5 ]
Ikeda, Shiro [6 ]
Okada, Masato [2 ,3 ]
机构
[1] JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Chiba 2778561, Japan
[3] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst, Tsukuba, Ibaraki 3050047, Japan
[4] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, Tokyo 1538902, Japan
[5] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan
[6] Inst Stat Math, Tachikawa, Tokyo 1908562, Japan
基金
日本学术振兴会;
关键词
CROSS-VALIDATION; RECOVERY; MODEL;
D O I
10.7566/JPSJ.87.044802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Sparse linear regression in unions of bases via Bayesian variable selection
    Fevotte, Cedric
    Godsill, Simon J.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (07) : 441 - 444
  • [2] Statistical mechanical analysis of sparse linear regression as a variable selection problem
    Obuchi, Tomoyuki
    Nakanishi-Ohno, Yoshinori
    Okada, Masato
    Kabashima, Yoshiyuki
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [3] Variable selection for sparse logistic regression
    Zanhua Yin
    [J]. Metrika, 2020, 83 : 821 - 836
  • [4] Variable selection for sparse logistic regression
    Yin, Zanhua
    [J]. METRIKA, 2020, 83 (07) : 821 - 836
  • [5] Variable selection in linear regression
    Lindsey, Charles
    Sheather, Simon
    [J]. STATA JOURNAL, 2010, 10 (04): : 650 - 669
  • [6] On variable selection in linear regression
    Kabaila, P
    [J]. ECONOMETRIC THEORY, 2002, 18 (04) : 913 - 925
  • [7] Variable selection in high-dimensional sparse multiresponse linear regression models
    Luo, Shan
    [J]. STATISTICAL PAPERS, 2020, 61 (03) : 1245 - 1267
  • [8] Variable selection in high-dimensional sparse multiresponse linear regression models
    Shan Luo
    [J]. Statistical Papers, 2020, 61 : 1245 - 1267
  • [9] VARIABLE SELECTION IN SPARSE REGRESSION WITH QUADRATIC MEASUREMENTS
    Fan, Jun
    Kong, Lingchen
    Wang, Liqun
    Xiu, Naihua
    [J]. STATISTICA SINICA, 2018, 28 (03) : 1157 - 1178
  • [10] Adaptive Variable Selection in Nonparametric Sparse Regression
    Ingster Y.
    Stepanova N.
    [J]. Journal of Mathematical Sciences, 2014, 199 (2) : 184 - 201