Variable selection for sparse logistic regression

被引:3
|
作者
Yin, Zanhua [1 ]
机构
[1] Gannan Normal Univ, Ganzhou, Peoples R China
关键词
Score function; High dimensions; Lasso; Logistic regression model; Sparse; GENERALIZED LINEAR-MODELS; GROUP LASSO; ORACLE INEQUALITIES; REGULARIZATION; CLASSIFICATION;
D O I
10.1007/s00184-020-00764-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the variable selection problem in a sparse logistical regression model. Inspired by the square-root Lasso, we develop a weighted score Lasso for logistical regression. The new method yields the estimation l(1) error bound under similar assumptions as introduced in Bach et al. (Electron J Stat 4:384-414, 2010). Compared to standard Lasso, the weighted score Lasso provides a direct choice for the tuning parameter. Both theoretical and simulation results confirm the satisfactory performance of the proposed method. We illustrate our methodology with a real microarray data set.
引用
收藏
页码:821 / 836
页数:16
相关论文
共 50 条
  • [1] Variable selection for sparse logistic regression
    Zanhua Yin
    [J]. Metrika, 2020, 83 : 821 - 836
  • [2] Variable Selection for Sparse Logistic Regression with Grouped Variables
    Zhong, Mingrui
    Yin, Zanhua
    Wang, Zhichao
    [J]. MATHEMATICS, 2023, 11 (24)
  • [3] Variable selection in logistic regression models
    Zellner, D
    Keller, F
    Zellner, GE
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2004, 33 (03) : 787 - 805
  • [4] Variable Selection in Logistic Regression Model
    Zhang Shangli
    Zhang Lili
    Qiu Kuanmin
    Lu Ying
    Cai Baigen
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2015, 24 (04) : 813 - 817
  • [5] Bayesian variable selection for logistic regression
    Tian, Yiqing
    Bondell, Howard D.
    Wilson, Alyson
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (05) : 378 - 393
  • [6] Variable Selection in Logistic Regression Model
    ZHANG Shangli
    ZHANG Lili
    QIU Kuanmin
    LU Ying
    CAI Baigen
    [J]. Chinese Journal of Electronics, 2015, 24 (04) : 813 - 817
  • [7] Sparse Bayesian variable selection in high-dimensional logistic regression models with correlated priors
    Ma, Zhuanzhuan
    Han, Zifei
    Ghosh, Souparno
    Wu, Liucang
    Wang, Min
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (01)
  • [8] Variable selection for multivariate logistic regression models
    Chen, MH
    Dey, DK
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 111 (1-2) : 37 - 55
  • [9] Robust variable selection in the logistic regression model
    Jiang, Yunlu
    Zhang, Jiantao
    Huang, Yingqiang
    Zou, Hang
    Huang, Meilan
    Chen, Fanhong
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (05): : 1572 - 1582
  • [10] VARIABLE SELECTION IN SPARSE REGRESSION WITH QUADRATIC MEASUREMENTS
    Fan, Jun
    Kong, Lingchen
    Wang, Liqun
    Xiu, Naihua
    [J]. STATISTICA SINICA, 2018, 28 (03) : 1157 - 1178