Variable selection for sparse logistic regression

被引:3
|
作者
Yin, Zanhua [1 ]
机构
[1] Gannan Normal Univ, Ganzhou, Peoples R China
关键词
Score function; High dimensions; Lasso; Logistic regression model; Sparse; GENERALIZED LINEAR-MODELS; GROUP LASSO; ORACLE INEQUALITIES; REGULARIZATION; CLASSIFICATION;
D O I
10.1007/s00184-020-00764-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the variable selection problem in a sparse logistical regression model. Inspired by the square-root Lasso, we develop a weighted score Lasso for logistical regression. The new method yields the estimation l(1) error bound under similar assumptions as introduced in Bach et al. (Electron J Stat 4:384-414, 2010). Compared to standard Lasso, the weighted score Lasso provides a direct choice for the tuning parameter. Both theoretical and simulation results confirm the satisfactory performance of the proposed method. We illustrate our methodology with a real microarray data set.
引用
收藏
页码:821 / 836
页数:16
相关论文
共 50 条