Variable selection for sparse logistic regression

被引:3
|
作者
Yin, Zanhua [1 ]
机构
[1] Gannan Normal Univ, Ganzhou, Peoples R China
关键词
Score function; High dimensions; Lasso; Logistic regression model; Sparse; GENERALIZED LINEAR-MODELS; GROUP LASSO; ORACLE INEQUALITIES; REGULARIZATION; CLASSIFICATION;
D O I
10.1007/s00184-020-00764-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the variable selection problem in a sparse logistical regression model. Inspired by the square-root Lasso, we develop a weighted score Lasso for logistical regression. The new method yields the estimation l(1) error bound under similar assumptions as introduced in Bach et al. (Electron J Stat 4:384-414, 2010). Compared to standard Lasso, the weighted score Lasso provides a direct choice for the tuning parameter. Both theoretical and simulation results confirm the satisfactory performance of the proposed method. We illustrate our methodology with a real microarray data set.
引用
收藏
页码:821 / 836
页数:16
相关论文
共 50 条
  • [21] Bayesian variable selection logistic regression with paired proteomic measurements
    Kakourou, Alexia
    Mertens, Bart
    [J]. BIOMETRICAL JOURNAL, 2018, 60 (05) : 1003 - 1020
  • [22] Variable and threshold selection to control predictive accuracy in logistic regression
    Kuk, Anthony Y. C.
    Li, Jialiang
    Rush, A. John
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2014, 63 (04) : 657 - 672
  • [23] Variable selection in multi-variable models of toxicity based on logistic regression
    Van der Schaaf, A.
    Langendijk, J. A.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2015, 115 : S108 - S108
  • [24] Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression
    Wen, Canhong
    Li, Zhenduo
    Dong, Ruipeng
    Ni, Yijin
    Pan, Wenliang
    [J]. INFORMS JOURNAL ON COMPUTING, 2023, 35 (05) : 1044 - 1060
  • [25] Variable Selection in Logistic Regression: The British English Dative Alternation
    Theijssen, Daphne
    [J]. INTERFACES: EXPLORATIONS IN LOGIC, LANGUAGE AND COMPUTATION, 2010, 6211 : 87 - 101
  • [26] Group Feature Selection Via Structural Sparse Logistic Regression for IDS
    Shah, Reehan Ali
    Qian, Yuntao
    Mahdi, Ghulam
    [J]. PROCEEDINGS OF 2016 IEEE 18TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 14TH INTERNATIONAL CONFERENCE ON SMART CITY; IEEE 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2016, : 594 - 600
  • [27] Sparse Logistic Regression with Supervised Selectivity for Predictors Selection in Credit Scoring
    Yulia, Zhosan
    Krasotkina, Olga
    Mottl, Vadim
    [J]. PROCEEDINGS OF THE SEVENTH SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2016), 2016, : 167 - 172
  • [28] A simple and efficient algorithm for gene selection using sparse logistic regression
    Shevade, SK
    Keerthi, SS
    [J]. BIOINFORMATICS, 2003, 19 (17) : 2246 - 2253
  • [29] On Regularized Sparse Logistic Regression
    Zhang, Mengyuan
    Liu, Kai
    [J]. 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1535 - 1540
  • [30] Robust and sparse logistic regression
    Cornilly, Dries
    Tubex, Lise
    Van Aelst, Stefan
    Verdonck, Tim
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (03) : 663 - 679