Bayesian structured variable selection in linear regression models

被引:0
|
作者
Min Wang
Xiaoqian Sun
Tao Lu
机构
[1] Michigan Technological University,Department of Mathematical Sciences
[2] Clemson University,Department of Mathematical Sciences
[3] State University of New York,Department of Epidemiology and Biostatistics
来源
Computational Statistics | 2015年 / 30卷
关键词
Interactions; Generalized singular ; -prior; Beta-prime prior; Posterior probability; Gibbs sampler; Consistency;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the Bayesian approach to the problem of variable selection in normal linear regression models with related predictors. We adopt a generalized singular g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}-prior distribution for the unknown model parameters and the beta-prime prior for the scaling factor g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}, which results in a closed-form expression of the marginal posterior distribution without integral representation. A special prior on the model space is then advocated to reflect and maintain the hierarchical or structural relationships among predictors. It is shown that under some nominal assumptions, the proposed approach is consistent in terms of model selection and prediction. Simulation studies show that our proposed approach has a good performance for structured variable selection in linear regression models. Finally, a real-data example is analyzed for illustrative purposes.
引用
收藏
页码:205 / 229
页数:24
相关论文
共 50 条
  • [1] Bayesian structured variable selection in linear regression models
    Wang, Min
    Sun, Xiaoqian
    Lu, Tao
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (01) : 205 - 229
  • [2] A novel Bayesian approach for variable selection in linear regression models
    Posch, Konstantin
    Arbeiter, Maximilian
    Pilz, Juergen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [3] Bayesian variable selection for regression models
    Kuo, L
    Mallick, B
    [J]. AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE SECTION ON BAYESIAN STATISTICAL SCIENCE, 1996, : 170 - 175
  • [4] Study of Bayesian variable selection method on mixed linear regression models
    Li, Yong
    Liu, Hefei
    Li, Rubing
    [J]. PLOS ONE, 2023, 18 (03):
  • [5] Bayesian variable and transformation selection in linear regression
    Hoeting, JA
    Raftery, AE
    Madigan, D
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (03) : 485 - 507
  • [6] Joint Bayesian variable and graph selection for regression models with network-structured predictors
    Peterson, Christine B.
    Stingo, Francesco C.
    Vannucci, Marina
    [J]. STATISTICS IN MEDICINE, 2016, 35 (07) : 1017 - 1031
  • [7] Bayesian variable selection in linear regression models with non-normal errors
    Ranciati, Saverio
    Galimberti, Giuliano
    Soffritti, Gabriele
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (02): : 323 - 358
  • [8] Bayesian variable selection in linear regression models with non-normal errors
    Saverio Ranciati
    Giuliano Galimberti
    Gabriele Soffritti
    [J]. Statistical Methods & Applications, 2019, 28 : 323 - 358
  • [9] BAYESIAN VARIABLE SELECTION IN LINEAR-REGRESSION - REPLY
    MITCHELL, TJ
    BEAUCHAMP, JJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) : 1035 - 1036
  • [10] Bayesian linear regression and variable selection for spectroscopic calibration
    Chen, Tao
    Martin, Elaine
    [J]. ANALYTICA CHIMICA ACTA, 2009, 631 (01) : 13 - 21