Non-linear variable selection in a regression context

被引:0
|
作者
Hill, Simon I. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Lab, Cambridge CB2 1TN, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Bayesian approach to variable selection in a regression context is presented. This aims to find which of a large number of input variables are the important ones in that they contribute to the given regression output. This approach is unlike many in the literature which focus more on features, and do not explicitly seek to include prior belief that many of the input variables do not contribute any information. The EM methodology presented enables this to be done in a nonlinear regression framework, in particular that of kernel regression. An initial experiment on a biscuit dough problem is presented.
引用
收藏
页码:441 / 445
页数:5
相关论文
共 50 条
  • [1] Non-linear Based Fuzzy Random Regression for Independent Variable Selection
    Salikon, Mohd Zaki Mohd
    Arbaiy, Nureize
    [J]. RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING, 2017, 549 : 179 - 188
  • [2] A STEPWISE VARIABLE SELECTION PROCEDURE FOR NON-LINEAR REGRESSION-MODELS
    PEDUZZI, PN
    HARDY, RJ
    HOLFORD, TR
    [J]. BIOMETRICS, 1980, 36 (03) : 511 - 516
  • [3] A STEPWISE VARIABLE SELECTION PROCEDURE FOR NON-LINEAR REGRESSION-MODELS
    HARRELL, FE
    LEE, KL
    [J]. BIOMETRICS, 1981, 37 (03) : 595 - 595
  • [4] A STEPWISE VARIABLE SELECTION PROCEDURE FOR NON-LINEAR REGRESSION-MODELS - REPLY
    PEDUZZI, PN
    HARDY, RJ
    HOLFORD, TR
    [J]. BIOMETRICS, 1981, 37 (03) : 596 - 596
  • [5] Variable selection in non-linear systems modelling
    Mao, KZ
    Billings, SA
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1999, 13 (02) : 351 - 366
  • [6] INLR, implicit non-linear latent variable regression
    Berglund, A
    Wold, S
    [J]. JOURNAL OF CHEMOMETRICS, 1997, 11 (02) : 141 - 156
  • [7] INLR, Implicit Non-linear Latent Variable Regression
    Berglund, A.
    Wold, S.
    [J]. Journal of Chemometrics, 11 (02):
  • [8] MULTIOBJECTIVE MODEL SELECTION FOR NON-LINEAR REGRESSION TECHNIQUES
    Pasolli, Luca
    Notarnicola, Claudia
    Bruzzone, Lorenzo
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 268 - 271
  • [9] Term and variable selection for non-linear system identification
    Wei, HL
    Billings, SA
    Liu, J
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2004, 77 (01) : 86 - 110
  • [10] On variable selection in linear regression
    Kabaila, P
    [J]. ECONOMETRIC THEORY, 2002, 18 (04) : 913 - 925