Non-linear variable selection in a regression context

被引:0
|
作者
Hill, Simon I. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Lab, Cambridge CB2 1TN, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Bayesian approach to variable selection in a regression context is presented. This aims to find which of a large number of input variables are the important ones in that they contribute to the given regression output. This approach is unlike many in the literature which focus more on features, and do not explicitly seek to include prior belief that many of the input variables do not contribute any information. The EM methodology presented enables this to be done in a nonlinear regression framework, in particular that of kernel regression. An initial experiment on a biscuit dough problem is presented.
引用
收藏
页码:441 / 445
页数:5
相关论文
共 50 条
  • [21] Bayesian variable selection in linear regression models with non-normal errors
    Saverio Ranciati
    Giuliano Galimberti
    Gabriele Soffritti
    [J]. Statistical Methods & Applications, 2019, 28 : 323 - 358
  • [22] Bayesian variable selection in linear regression models with non-normal errors
    Ranciati, Saverio
    Galimberti, Giuliano
    Soffritti, Gabriele
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (02): : 323 - 358
  • [23] Variable Selection in Multivariate Functional Linear Regression
    Yeh, Chi-Kuang
    Sang, Peijun
    [J]. STATISTICS IN BIOSCIENCES, 2023,
  • [24] RESPONSE VARIABLE SELECTION IN MULTIVARIATE LINEAR REGRESSION
    Khare, Kshitij
    Su, Zhihua
    [J]. STATISTICA SINICA, 2024, 34 (03) : 1325 - 1345
  • [25] Variable Selection in Linear Regression With Many Predictors
    Cai, Airong
    Tsay, Ruey S.
    Chen, Rong
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (03) : 573 - 591
  • [26] Variable selection and transformation in linear regression models
    Yeo, IK
    [J]. STATISTICS & PROBABILITY LETTERS, 2005, 72 (03) : 219 - 226
  • [27] Bayesian variable and transformation selection in linear regression
    Hoeting, JA
    Raftery, AE
    Madigan, D
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (03) : 485 - 507
  • [28] ROBUST CRITERION FOR VARIABLE SELECTION IN LINEAR REGRESSION
    Patil, A. B.
    Kashid, D. N.
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2009, 5 (02): : 509 - 521
  • [29] Variable selection in functional linear concurrent regression
    Ghosal, Rahul
    Maity, Arnab
    Clark, Timothy
    Longo, Stefano B.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2020, 69 (03) : 565 - 587
  • [30] Neural networks and non-linear regression
    Stein, WE
    Dattero, R
    Mizzi, PJ
    [J]. DECISION SCIENCES INSTITUTE 1998 PROCEEDINGS, VOLS 1-3, 1998, : 1075 - 1077