ROBUST CRITERION FOR VARIABLE SELECTION IN LINEAR REGRESSION

被引:0
|
作者
Patil, A. B. [1 ]
Kashid, D. N. [1 ]
机构
[1] Shivaji Univ, Dept Stat, Kolhapur 416004, Maharashtra, India
关键词
Linear regression; Robust estimator; Variable selection; Kp-statistic; Outlier observation;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
In this paper, the variable selection problem in multiple linear regressions is considered. Variable selection method is widely used in data analysis. Many subset selection methods are available in the literature, but majority of methods are based on the least squares estimator of regression coefficients. However, when data contain an outlier observation, the performance of least squares estimator is poor. Consequently, method based on this estimator tends to select a 'wrong' subset. In this article, we propose a simple and general method called Kp-criterion for variable selection in the linear regression. The main feature of the proposed criterion is that it can be used any type of estimator of the regression coefficients without any modification in the proposed criterion. The method is illustrated with numerical examples.
引用
收藏
页码:509 / 521
页数:13
相关论文
共 50 条
  • [1] The Loss Rank Criterion for Variable Selection in Linear Regression Analysis
    Minh-Ngoc Tran
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (03) : 466 - 479
  • [2] A robust and efficient variable selection method for linear regression
    Yang, Zhuoran
    Fu, Liya
    Wang, You-Gan
    Dong, Zhixiong
    Jiang, Yunlu
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (14) : 3677 - 3692
  • [3] Robust nonnegative garrote variable selection in linear regression
    Gijbels, I.
    Vrinssen, I.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 : 1 - 22
  • [4] Variable Selection Linear Regression for Robust Speech Recognition
    Tsao, Yu
    Hu, Ting-Yao
    Sakti, Sakriani
    Nakamura, Satoshi
    Lee, Lin-shan
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (06) : 1477 - 1487
  • [5] Robust Bayesian nonparametric variable selection for linear regression
    Cabezas, Alberto
    Battiston, Marco
    Nemeth, Christopher
    [J]. STAT, 2024, 13 (02):
  • [6] Robust variable selection for mixture linear regression models
    Jiang, Yunlu
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 549 - 559
  • [7] Robust estimation and variable selection in heteroscedastic linear regression
    Gijbels, I.
    Vrinssen, I.
    [J]. STATISTICS, 2019, 53 (03) : 489 - 532
  • [8] Robust Signed-Rank Variable Selection in Linear Regression
    Abebe, Asheber
    Bindele, Huybrechts F.
    [J]. ROBUST RANK-BASED AND NONPARAMETRIC METHODS, 2016, 168 : 25 - 45
  • [9] A simulation study on classic and robust variable selection in linear regression
    Çetin, Meral
    Erar, Aydin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) : 1629 - 1643
  • [10] New Robust Variable Selection Methods for Linear Regression Models
    Chen, Ziqi
    Tang, Man-Lai
    Gao, Wei
    Shi, Ning-Zhong
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (03) : 725 - 741