Neuromorphic computing with antiferromagnetic spintronics

被引:47
|
作者
Kurenkov, Aleksandr [1 ,2 ,3 ]
Fukami, Shunsuke [1 ,2 ,3 ,4 ,5 ]
Ohno, Hideo [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tohoku Univ, Ctr Sci & Innovat Spintron, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Ctr Spintron Res Network, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Res Inst Elect Commun, Lab Nanoelect & Spintron, Sendai, Miyagi 9808577, Japan
[4] Tohoku Univ, Ctr Innovat Integrated Elect Syst, Sendai, Miyagi 9800845, Japan
[5] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
关键词
SPIN-ORBIT TORQUE; LARGE-SCALE MODEL; NEURAL-NETWORKS; MAGNETIZATION; CLASSIFICATION; DRIVEN; MEMORY; WAVES;
D O I
10.1063/5.0009482
中图分类号
O59 [应用物理学];
学科分类号
摘要
While artificial intelligence, capable of readily addressing cognitive tasks, has transformed technologies and daily lives, there remains a huge gap with biological systems in terms of performance per energy unit. Neuromorphic computing, in which hardware with alternative architectures, circuits, devices, and/or materials is explored, is expected to reduce the gap. Antiferromagnetic spintronics could offer a promising platform for this scheme. Active functionalities of antiferromagnetic systems have been demonstrated recently and several works indicated their potential for biologically inspired computing. In this perspective, we look through the prism of these works and discuss prospects and challenges of antiferromagnetic spintronics for neuromorphic computing. Overview and discussion are given on non-spiking artificial neural networks, spiking neural networks, and reservoir computing.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Antiferromagnetic opto-spintronics
    P. Němec
    M. Fiebig
    T. Kampfrath
    A. V. Kimel
    [J]. Nature Physics, 2018, 14 : 229 - 241
  • [32] Perspective on antiferromagnetic iridates for spintronics
    Yang, Junyi
    Zhang, Haiyang
    Zhang, Han
    Hao, Lin
    [J]. APL MATERIALS, 2023, 11 (07)
  • [33] Antiferromagnetic opto-spintronics
    Nemec, P.
    Fiebig, M.
    Kampfrath, T.
    Kimel, A. V.
    [J]. NATURE PHYSICS, 2018, 14 (03) : 229 - 241
  • [34] Emerging materials in antiferromagnetic spintronics
    Baltz, V.
    Hoffmann, A.
    Emori, S.
    Shao, D. -F.
    Jungwirth, T.
    [J]. APL MATERIALS, 2024, 12 (03)
  • [35] Neuromorphic Computing with Emerging Antiferromagnetic Ordering in Spin-Orbit Torque Devices
    Ojha, Durgesh Kumar
    Huang, Yu-Hsin
    Lin, Yu-Lon
    Chatterjee, Ratnamala
    Chang, Wen-Yueh
    Tseng, Yuan-Chieh
    [J]. NANO LETTERS, 2024, 24 (25) : 7706 - 7715
  • [36] Artificial neurons based on antiferromagnetic auto-oscillators as a platform for neuromorphic computing
    Bradley, H.
    Louis, S.
    Trevillian, C.
    Quach, L.
    Bankowski, E.
    Slavin, A.
    Tyberkevych, V.
    [J]. AIP ADVANCES, 2023, 13 (01)
  • [37] Publisher Correction: Synthetic antiferromagnetic spintronics
    R. A. Duine
    Kyung-Jin Lee
    Stuart S. P. Parkin
    M. D. Stiles
    [J]. Nature Physics, 2018, 14 (7) : 766 - 766
  • [38] Non-collinear antiferromagnetic spintronics
    Rimmler, Berthold H.
    Pal, Banabir
    Parkin, Stuart S. P.
    [J]. NATURE REVIEWS MATERIALS, 2024,
  • [39] NiSi: A New Venue for Antiferromagnetic Spintronics
    Ghosh, Pousali
    Guo, Jiasen
    Ye, Feng
    Heitmann, Thomas
    Kelley, Steven
    Ernst, Arthur
    Dugaev, Vitalii
    Singh, Deepak K. K.
    [J]. ADVANCED MATERIALS, 2023, 35 (31)
  • [40] Publisher Correction: Topological antiferromagnetic spintronics
    Libor Šmejkal
    Yuriy Mokrousov
    Binghai Yan
    Allan H. MacDonald
    [J]. Nature Physics, 2018, 14 (7) : 766 - 766