Neuromorphic computing with antiferromagnetic spintronics

被引:47
|
作者
Kurenkov, Aleksandr [1 ,2 ,3 ]
Fukami, Shunsuke [1 ,2 ,3 ,4 ,5 ]
Ohno, Hideo [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tohoku Univ, Ctr Sci & Innovat Spintron, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Ctr Spintron Res Network, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Res Inst Elect Commun, Lab Nanoelect & Spintron, Sendai, Miyagi 9808577, Japan
[4] Tohoku Univ, Ctr Innovat Integrated Elect Syst, Sendai, Miyagi 9800845, Japan
[5] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
关键词
SPIN-ORBIT TORQUE; LARGE-SCALE MODEL; NEURAL-NETWORKS; MAGNETIZATION; CLASSIFICATION; DRIVEN; MEMORY; WAVES;
D O I
10.1063/5.0009482
中图分类号
O59 [应用物理学];
学科分类号
摘要
While artificial intelligence, capable of readily addressing cognitive tasks, has transformed technologies and daily lives, there remains a huge gap with biological systems in terms of performance per energy unit. Neuromorphic computing, in which hardware with alternative architectures, circuits, devices, and/or materials is explored, is expected to reduce the gap. Antiferromagnetic spintronics could offer a promising platform for this scheme. Active functionalities of antiferromagnetic systems have been demonstrated recently and several works indicated their potential for biologically inspired computing. In this perspective, we look through the prism of these works and discuss prospects and challenges of antiferromagnetic spintronics for neuromorphic computing. Overview and discussion are given on non-spiking artificial neural networks, spiking neural networks, and reservoir computing.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Concepts of antiferromagnetic spintronics
    Gomonay, O.
    Jungwirth, T.
    Sinova, J.
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (04):
  • [22] Synthetic antiferromagnetic spintronics
    R. A. Duine
    Kyung-Jin Lee
    Stuart S. P. Parkin
    M. D. Stiles
    [J]. Nature Physics, 2018, 14 : 217 - 219
  • [23] Prospect for Antiferromagnetic Spintronics
    Marti, Xavier
    Fina, Ignasi
    Jungwirth, Tomas
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (04)
  • [24] Advances in Antiferromagnetic Spintronics
    Hirohata, Atsufumi
    [J]. MAGNETOCHEMISTRY, 2022, 8 (04)
  • [25] Antiferromagnetic spintronics and beyond
    A. Dal Din
    O. J. Amin
    P. Wadley
    K. W. Edmonds
    [J]. npj Spintronics, 2 (1):
  • [26] Antiferromagnetic spintronics: An overview and outlook
    Xiong, Danrong
    Jiang, Yuhao
    Shi, Kewen
    Du, Ao
    Yao, Yuxuan
    Guo, Zongxia
    Zhu, Daoqian
    Cao, Kaihua
    Peng, Shouzhong
    Cai, Wenlong
    Zhu, Dapeng
    Zhao, Weisheng
    [J]. FUNDAMENTAL RESEARCH, 2022, 2 (04): : 522 - 534
  • [27] The multiple directions of antiferromagnetic spintronics
    T. Jungwirth
    J. Sinova
    A. Manchon
    X. Marti
    J. Wunderlich
    C. Felser
    [J]. Nature Physics, 2018, 14 : 200 - 203
  • [28] Towards antiferromagnetic metal spintronics
    Basset, J.
    Sharma, A.
    Wei, Z.
    Bass, J.
    Tsoi, M.
    [J]. SPINTRONICS, 2008, 7036
  • [29] ANTIFERROMAGNETIC SPINTRONICS Improving memory
    Prando, Giacomo
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (02) : 99 - 99
  • [30] The multiple directions of antiferromagnetic spintronics
    Jungwirth, T.
    Sinova, J.
    Manchon, A.
    Marti, X.
    Wunderlich, J.
    Felser, C.
    [J]. NATURE PHYSICS, 2018, 14 (03) : 200 - 203