Antiferromagnetic spintronics: An overview and outlook

被引:61
|
作者
Xiong, Danrong [1 ]
Jiang, Yuhao [1 ]
Shi, Kewen [1 ]
Du, Ao [1 ]
Yao, Yuxuan [1 ]
Guo, Zongxia [1 ]
Zhu, Daoqian [1 ]
Cao, Kaihua [1 ,2 ]
Peng, Shouzhong [1 ]
Cai, Wenlong [1 ]
Zhu, Dapeng [1 ,2 ]
Zhao, Weisheng [1 ,2 ]
机构
[1] Beihang Univ, Sch Integrated Circuit Sci & Engn, Fert Beijing Inst, MIIT Key Lab Spintron, Beijing 100191, Peoples R China
[2] Beihang Univ, Beihang Goertek Joint Microelect Inst, Qingdao Res Inst, Qingdao 266000, Peoples R China
来源
FUNDAMENTAL RESEARCH | 2022年 / 2卷 / 04期
基金
中国国家自然科学基金;
关键词
Antiferromagnets; MRAM; Spintronics; Spin-orbit torque; Exchange bias; SPIN-ORBIT TORQUE; MAGNETIC TUNNEL-JUNCTION; RANDOM-ACCESS MEMORY; GIANT MAGNETORESISTANCE; PERPENDICULAR MAGNETIZATION; INTERPLAY;
D O I
10.1016/j.fmre.2022.03.016
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the past few decades, the diversified development of antiferromagnetic spintronics has made antiferromag-nets (AFMs) interesting and very useful. After tough challenges, the applications of AFMs in electronic devices have transitioned from focusing on the interface coupling features to achieving the manipulation and detection of AFMs. As AFMs are internally magnetic, taking full use of AFMs for information storage has been the main target of research. In this paper, we provide a comprehensive description of AFM spintronics applications from the interface coupling, read-out operations, and writing manipulations perspective. We examine the early use of AFMs in magnetic recordings and conventional magnetoresistive random-access memory (MRAM), and review the latest mechanisms of the manipulation and detection of AFMs. Finally, based on exchange bias (EB) ma-nipulation, a high-performance EB-MRAM is introduced as the next generation of AFM-based memories, which provides an effective method for read-out and writing of AFMs and opens a new era for AFM spintronics.
引用
收藏
页码:522 / 534
页数:13
相关论文
共 50 条
  • [1] Spintronics for Energy- Efficient Computing: An Overview and Outlook
    Guo, Zongxia
    Yin, Jialiang
    Bai, Yue
    Zhu, Daoqian
    Shi, Kewen
    Wang, Gefei
    Cao, Kaihua
    Zhao, Weisheng
    [J]. PROCEEDINGS OF THE IEEE, 2021, 109 (08) : 1398 - 1417
  • [2] Antiferromagnetic spintronics
    Fukami, Shunsuke
    Lorenz, Virginia O.
    Gomonay, Olena
    [J]. Journal of Applied Physics, 2020, 128 (07):
  • [3] Antiferromagnetic spintronics
    Fukami, Shunsuke
    Lorenz, Virginia O.
    Gomonay, Olena
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 128 (07)
  • [4] Antiferromagnetic spintronics
    Sinova, Jairo
    Jungwirth, Tomas
    Gomonay, Olena
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (04):
  • [5] Antiferromagnetic spintronics
    Baltz, V.
    Manchon, A.
    Tsoi, M.
    Moriyama, T.
    Ono, T.
    Tserkovnyak, Y.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [6] Antiferromagnetic spintronics
    Jungwirth, T.
    Marti, X.
    Wadley, P.
    Wunderlich, J.
    [J]. NATURE NANOTECHNOLOGY, 2016, 11 (03) : 231 - 241
  • [7] Antiferromagnetic spintronics
    Jungwirth T.
    Marti X.
    Wadley P.
    Wunderlich J.
    [J]. Nature Nanotechnology, 2016, 11 (3) : 231 - 241
  • [8] Antiferromagnetic metal spintronics
    MacDonald, A. H.
    Tsoi, M.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1948): : 3098 - 3114
  • [9] Coherent antiferromagnetic spintronics
    Han, Jiahao
    Cheng, Ran
    Liu, Luqiao
    Ohno, Hideo
    Fukami, Shunsuke
    [J]. NATURE MATERIALS, 2023, 22 (06) : 684 - 695
  • [10] Topological antiferromagnetic spintronics
    Libor Šmejkal
    Yuriy Mokrousov
    Binghai Yan
    Allan H. MacDonald
    [J]. Nature Physics, 2018, 14 : 242 - 251