NiSi: A New Venue for Antiferromagnetic Spintronics

被引:5
|
作者
Ghosh, Pousali [1 ]
Guo, Jiasen [1 ]
Ye, Feng [2 ]
Heitmann, Thomas [3 ]
Kelley, Steven [4 ]
Ernst, Arthur [5 ]
Dugaev, Vitalii [6 ]
Singh, Deepak K. K. [1 ,7 ]
机构
[1] Univ Missouri, Dept Phys & Astron, 223 Phys Bldg, Columbia, MO 65211 USA
[2] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[3] Univ Missouri, Univ Missouri Res Reactor, 1513 Res Pk Dr, Columbia, MO 65211 USA
[4] Univ Missouri, Dept Chem, 601 South Coll Ave, Columbia, MO 65211 USA
[5] Johannes Kepler Univ Linz, Inst Theoret Phys, Altenberger Str 69, A-4040 Linz, Austria
[6] Rzeszow Univ Technol, Dept Phys & Med Engn, Al Powstancow Warszawy 12, PL-39959 Rzeszow, Poland
[7] MU Mat Sci & Engn Inst, C3241 Lafferre Hall, Columbia, MO 65211 USA
关键词
antiferromagnetic metal; neutron scattering; spintronics; transition metal intermetallics; CHIRALITY;
D O I
10.1002/adma.202302120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Envisaging antiferromagnetic spintronics pivots on two key criteria of high transition temperature and tuning of underlying magnetic order using straightforward application of magnetic field or electric current. Here, it is shown that NiSi metal can provide suitable new platform in this quest. First, the study unveils high-temperature antiferromagnetism in single-crystal NiSi with Neel temperature, T-N > 700 K. Antiferromagnetic order in NiSi is accompanied by non-centrosymmetric magnetic character with small ferromagnetic component in the a-c plane. Second, it is found that NiSi manifests distinct magnetic and electronic hysteresis responses to field applications due to the disparity in two moment directions. While magnetic hysteresis is characterized by one-step switching between ferromagnetic states of uncompensated moment, electronic behavior is ascribed to metamagnetic switching phenomena between non-collinear spin configurations. Importantly, the switching behaviors persist to high temperature. The properties underscore the importance of NiSi in the pursuit of antiferromagnetic spintronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Antiferromagnetic spintronics
    Fukami, Shunsuke
    Lorenz, Virginia O.
    Gomonay, Olena
    Journal of Applied Physics, 2020, 128 (07):
  • [2] Antiferromagnetic spintronics
    Fukami, Shunsuke
    Lorenz, Virginia O.
    Gomonay, Olena
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (07)
  • [3] Antiferromagnetic spintronics
    Sinova, Jairo
    Jungwirth, Tomas
    Gomonay, Olena
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (04):
  • [4] Antiferromagnetic spintronics
    Baltz, V.
    Manchon, A.
    Tsoi, M.
    Moriyama, T.
    Ono, T.
    Tserkovnyak, Y.
    REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [5] Antiferromagnetic spintronics
    Jungwirth T.
    Marti X.
    Wadley P.
    Wunderlich J.
    Nature Nanotechnology, 2016, 11 (3) : 231 - 241
  • [6] Antiferromagnetic spintronics
    Jungwirth, T.
    Marti, X.
    Wadley, P.
    Wunderlich, J.
    NATURE NANOTECHNOLOGY, 2016, 11 (03) : 231 - 241
  • [7] Antiferromagnetic metal spintronics
    MacDonald, A. H.
    Tsoi, M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1948): : 3098 - 3114
  • [8] Coherent antiferromagnetic spintronics
    Jiahao Han
    Ran Cheng
    Luqiao Liu
    Hideo Ohno
    Shunsuke Fukami
    Nature Materials, 2023, 22 : 684 - 695
  • [9] Topological antiferromagnetic spintronics
    Smejkal, Libor
    Mokrousov, Yuriy
    Yan, Binghai
    MacDonald, Allan H.
    NATURE PHYSICS, 2018, 14 (03) : 242 - 251
  • [10] Topological antiferromagnetic spintronics
    Libor Šmejkal
    Yuriy Mokrousov
    Binghai Yan
    Allan H. MacDonald
    Nature Physics, 2018, 14 : 242 - 251