NiSi: A New Venue for Antiferromagnetic Spintronics

被引:5
|
作者
Ghosh, Pousali [1 ]
Guo, Jiasen [1 ]
Ye, Feng [2 ]
Heitmann, Thomas [3 ]
Kelley, Steven [4 ]
Ernst, Arthur [5 ]
Dugaev, Vitalii [6 ]
Singh, Deepak K. K. [1 ,7 ]
机构
[1] Univ Missouri, Dept Phys & Astron, 223 Phys Bldg, Columbia, MO 65211 USA
[2] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[3] Univ Missouri, Univ Missouri Res Reactor, 1513 Res Pk Dr, Columbia, MO 65211 USA
[4] Univ Missouri, Dept Chem, 601 South Coll Ave, Columbia, MO 65211 USA
[5] Johannes Kepler Univ Linz, Inst Theoret Phys, Altenberger Str 69, A-4040 Linz, Austria
[6] Rzeszow Univ Technol, Dept Phys & Med Engn, Al Powstancow Warszawy 12, PL-39959 Rzeszow, Poland
[7] MU Mat Sci & Engn Inst, C3241 Lafferre Hall, Columbia, MO 65211 USA
关键词
antiferromagnetic metal; neutron scattering; spintronics; transition metal intermetallics; CHIRALITY;
D O I
10.1002/adma.202302120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Envisaging antiferromagnetic spintronics pivots on two key criteria of high transition temperature and tuning of underlying magnetic order using straightforward application of magnetic field or electric current. Here, it is shown that NiSi metal can provide suitable new platform in this quest. First, the study unveils high-temperature antiferromagnetism in single-crystal NiSi with Neel temperature, T-N > 700 K. Antiferromagnetic order in NiSi is accompanied by non-centrosymmetric magnetic character with small ferromagnetic component in the a-c plane. Second, it is found that NiSi manifests distinct magnetic and electronic hysteresis responses to field applications due to the disparity in two moment directions. While magnetic hysteresis is characterized by one-step switching between ferromagnetic states of uncompensated moment, electronic behavior is ascribed to metamagnetic switching phenomena between non-collinear spin configurations. Importantly, the switching behaviors persist to high temperature. The properties underscore the importance of NiSi in the pursuit of antiferromagnetic spintronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Towards antiferromagnetic metal spintronics
    Basset, J.
    Sharma, A.
    Wei, Z.
    Bass, J.
    Tsoi, M.
    SPINTRONICS, 2008, 7036
  • [22] ANTIFERROMAGNETIC SPINTRONICS Improving memory
    Prando, Giacomo
    NATURE NANOTECHNOLOGY, 2017, 12 (02) : 99 - 99
  • [23] Empowering spintronics with antiferromagnetic diodes
    Finocchio, Giovanni
    Tomasello, Riccardo
    Carpentieri, Mario
    NATURE NANOTECHNOLOGY, 2025, 20 (02) : 185 - 186
  • [24] Antiferromagnetic spintronics: An overview and outlook
    Xiong, Danrong
    Jiang, Yuhao
    Shi, Kewen
    Du, Ao
    Yao, Yuxuan
    Guo, Zongxia
    Zhu, Daoqian
    Cao, Kaihua
    Peng, Shouzhong
    Cai, Wenlong
    Zhu, Dapeng
    Zhao, Weisheng
    FUNDAMENTAL RESEARCH, 2022, 2 (04): : 522 - 534
  • [25] The multiple directions of antiferromagnetic spintronics
    T. Jungwirth
    J. Sinova
    A. Manchon
    X. Marti
    J. Wunderlich
    C. Felser
    Nature Physics, 2018, 14 : 200 - 203
  • [26] Antiferromagnetic opto-spintronics
    P. Němec
    M. Fiebig
    T. Kampfrath
    A. V. Kimel
    Nature Physics, 2018, 14 : 229 - 241
  • [27] The multiple directions of antiferromagnetic spintronics
    Jungwirth, T.
    Sinova, J.
    Manchon, A.
    Marti, X.
    Wunderlich, J.
    Felser, C.
    NATURE PHYSICS, 2018, 14 (03) : 200 - 203
  • [28] Emerging materials in antiferromagnetic spintronics
    Baltz, V.
    Hoffmann, A.
    Emori, S.
    Shao, D. -F.
    Jungwirth, T.
    APL MATERIALS, 2024, 12 (03)
  • [29] Antiferromagnetic opto-spintronics
    Nemec, P.
    Fiebig, M.
    Kampfrath, T.
    Kimel, A. V.
    NATURE PHYSICS, 2018, 14 (03) : 229 - 241
  • [30] Perspective on antiferromagnetic iridates for spintronics
    Yang, Junyi
    Zhang, Haiyang
    Zhang, Han
    Hao, Lin
    APL MATERIALS, 2023, 11 (07)