Perspective on antiferromagnetic iridates for spintronics

被引:1
|
作者
Yang, Junyi [1 ]
Zhang, Haiyang [2 ]
Zhang, Han [3 ]
Hao, Lin [2 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Chinese Acad Sci, Anhui Key Lab Condensed Matter Phys Extreme Condit, High Magnet Field Lab, HFIPS, Hefei 230031, Anhui, Peoples R China
[3] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213001, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
ANISOTROPIC MAGNETORESISTANCE; SPIN; FERROMAGNETISM; PHASES; STATE;
D O I
10.1063/5.0155794
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Antiferromagnetic (AFM) iridates are recently discovered to be a fertile playground for exploring emergent phenomena relevant to the intriguing interplay among multiple degrees of freedom, such as strong spin-orbit coupling, electron correlation, and the crystal field effect. These phenomena offer interesting routes for probing as well as controlling AFM order in iridate, which is essential in AFM spintronics. In this perspective, we will briefly review recent studies on AFM iridates that host large potential for advancing the reading (anisotropic magnetoresistance effect, etc.) and writing (magnetic field control of AFM order, etc.) functionalities of AFM spintronics. We will also discuss promising directions for expanding the research of AFM iridate based spintronics from the perspectives of material growth, manipulation protocol, and characterization technique.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Antiferromagnetic spintronics
    Fukami, Shunsuke
    Lorenz, Virginia O.
    Gomonay, Olena
    Journal of Applied Physics, 2020, 128 (07):
  • [2] Antiferromagnetic spintronics
    Fukami, Shunsuke
    Lorenz, Virginia O.
    Gomonay, Olena
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (07)
  • [3] Antiferromagnetic spintronics
    Sinova, Jairo
    Jungwirth, Tomas
    Gomonay, Olena
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (04):
  • [4] Antiferromagnetic spintronics
    Baltz, V.
    Manchon, A.
    Tsoi, M.
    Moriyama, T.
    Ono, T.
    Tserkovnyak, Y.
    REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [5] Antiferromagnetic spintronics
    Jungwirth T.
    Marti X.
    Wadley P.
    Wunderlich J.
    Nature Nanotechnology, 2016, 11 (3) : 231 - 241
  • [6] Antiferromagnetic spintronics
    Jungwirth, T.
    Marti, X.
    Wadley, P.
    Wunderlich, J.
    NATURE NANOTECHNOLOGY, 2016, 11 (03) : 231 - 241
  • [7] Antiferromagnetic metal spintronics
    MacDonald, A. H.
    Tsoi, M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1948): : 3098 - 3114
  • [8] Coherent antiferromagnetic spintronics
    Jiahao Han
    Ran Cheng
    Luqiao Liu
    Hideo Ohno
    Shunsuke Fukami
    Nature Materials, 2023, 22 : 684 - 695
  • [9] Topological antiferromagnetic spintronics
    Smejkal, Libor
    Mokrousov, Yuriy
    Yan, Binghai
    MacDonald, Allan H.
    NATURE PHYSICS, 2018, 14 (03) : 242 - 251
  • [10] Topological antiferromagnetic spintronics
    Libor Šmejkal
    Yuriy Mokrousov
    Binghai Yan
    Allan H. MacDonald
    Nature Physics, 2018, 14 : 242 - 251