Perspective on antiferromagnetic iridates for spintronics

被引:1
|
作者
Yang, Junyi [1 ]
Zhang, Haiyang [2 ]
Zhang, Han [3 ]
Hao, Lin [2 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Chinese Acad Sci, Anhui Key Lab Condensed Matter Phys Extreme Condit, High Magnet Field Lab, HFIPS, Hefei 230031, Anhui, Peoples R China
[3] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213001, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
ANISOTROPIC MAGNETORESISTANCE; SPIN; FERROMAGNETISM; PHASES; STATE;
D O I
10.1063/5.0155794
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Antiferromagnetic (AFM) iridates are recently discovered to be a fertile playground for exploring emergent phenomena relevant to the intriguing interplay among multiple degrees of freedom, such as strong spin-orbit coupling, electron correlation, and the crystal field effect. These phenomena offer interesting routes for probing as well as controlling AFM order in iridate, which is essential in AFM spintronics. In this perspective, we will briefly review recent studies on AFM iridates that host large potential for advancing the reading (anisotropic magnetoresistance effect, etc.) and writing (magnetic field control of AFM order, etc.) functionalities of AFM spintronics. We will also discuss promising directions for expanding the research of AFM iridate based spintronics from the perspectives of material growth, manipulation protocol, and characterization technique.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Stability of the antiferromagnetic state in the electron doped iridates
    Bhowal, Sayantika
    Kurdestany, Jamshid Moradi
    Satpathy, Sashi
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (23)
  • [32] Evidence of resistive switching into a dynamical state in antiferromagnetic iridates
    Williamson, Morgan
    Shen, Shida
    Cao, Gang
    Zhou, Jianshi
    Tsoi, Maxim
    AIP ADVANCES, 2019, 9 (03)
  • [33] Publisher Correction: Synthetic antiferromagnetic spintronics
    R. A. Duine
    Kyung-Jin Lee
    Stuart S. P. Parkin
    M. D. Stiles
    Nature Physics, 2018, 14 (7) : 766 - 766
  • [34] Non-collinear antiferromagnetic spintronics
    Rimmler, Berthold H.
    Pal, Banabir
    Parkin, Stuart S. P.
    NATURE REVIEWS MATERIALS, 2025, 10 (02): : 109 - 127
  • [35] NiSi: A New Venue for Antiferromagnetic Spintronics
    Ghosh, Pousali
    Guo, Jiasen
    Ye, Feng
    Heitmann, Thomas
    Kelley, Steven
    Ernst, Arthur
    Dugaev, Vitalii
    Singh, Deepak K. K.
    ADVANCED MATERIALS, 2023, 35 (31)
  • [36] Publisher Correction: Topological antiferromagnetic spintronics
    Libor Šmejkal
    Yuriy Mokrousov
    Binghai Yan
    Allan H. MacDonald
    Nature Physics, 2018, 14 (7) : 766 - 766
  • [37] Route towards Dirac and Weyl antiferromagnetic spintronics
    Smejkal, Libor
    Jungwirth, Tomas
    Sinova, Jairo
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (04):
  • [38] Review on spin-split antiferromagnetic spintronics
    Yan, Han
    Zhou, Xiaorong
    Qin, Peixin
    Liu, Zhiqi
    APPLIED PHYSICS LETTERS, 2024, 124 (03)
  • [39] Antiferromagnetic spintronics: From metals to functional oxides
    Tsoi, Maxim
    LOW TEMPERATURE PHYSICS, 2023, 49 (07) : 786 - 793
  • [40] Dirac fermions in the antiferromagnetic spintronics material CuMnAs
    Xu, Shao-Gang
    Chen, Zhong-Jia
    Chen, Xin-Bo
    Zhao, Yu-Jun
    Xu, Hu
    Zhang, Xiuwen
    PHYSICAL REVIEW B, 2020, 102 (12)