Post-quantum Simpson's type inequalities for coordinated convex functions

被引:1
|
作者
You, Xue-Xiao [1 ]
Ali, Muhammad Aamir [2 ]
Murtaza, Ghulam [3 ]
Chasreechai, Saowaluck [4 ]
Ntouyas, Sotiris K. [5 ,6 ]
Sitthiwirattham, Thanin [7 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Univ Management & Technol, Dept Math, Lahore, Pakistan
[4] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[5] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[6] King Abdulaziz Univ, Nonlinear Anal & Appl Math NiAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[7] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
来源
AIMS MATHEMATICS | 2021年 / 7卷 / 02期
关键词
Simpson's inequalities; (p; q)-integrals; post quantum calculus; co-ordinated convexity; MIDPOINT-TYPE INEQUALITIES; HERMITE-HADAMARD INEQUALITIES;
D O I
10.3934/math.2022172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some new Simpson's type inequalities for partial (p, q)-differentiable convex functions of two variables in the context of (p, q)-calculus. We also show that the findings in this paper are generalizations of comparable findings in the literature.
引用
收藏
页码:3097 / 3132
页数:36
相关论文
共 50 条
  • [31] FRACTIONAL SIMPSON LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS
    Bouhadjar, S.
    Meftah, B.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (03): : 563 - 584
  • [32] FRACTIONAL SIMPSON LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS
    Bouhadjar, S.
    Meftah, B.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 16 (03): : 563 - 584
  • [33] Simpson's Second Type Integral Inequalities for Twice Differentiable Convex Functions
    Iftikhar, Sabah
    Uche, Ugochukwu David
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 766 - 783
  • [34] New Simpson Type Integral Inequalities for s-Convex Functions and Their Applications
    Kashuri, Artion
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Hamasalh, Faraidun
    Chu, Yuming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [35] ON NEW INEQUALITIES OF SIMPSON'S TYPE FOR QUASI-CONVEX FUNCTIONS WITH APPLICATIONS
    Set, Erhan
    Ozdemir, M. Emin
    Sarikaya, Mehmet Zeki
    TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (03): : 357 - 364
  • [36] New Quantum Boundaries for q-Simpson's Type Inequalities for Co-Ordinated Convex Functions
    Alp, Necmettin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    FILOMAT, 2022, 36 (12) : 3919 - 3940
  • [37] SIMPSON'S AND NEWTON'S TYPE QUANTUM INTEGRAL INEQUALITIES FOR PREINVEX FUNCTIONS
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Sehar, Mubarra
    Murtaza, Ghulam
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (01): : 193 - 209
  • [38] Simpson-Type Inequalities for Geometrically Relative Convex Functions
    M. A. Noor
    K. I. Noor
    M. U. Awan
    Ukrainian Mathematical Journal, 2018, 70 : 1145 - 1154
  • [39] Simpson-Type Inequalities for Geometrically Relative Convex Functions
    Noor, M. A.
    Noor, K. I.
    Awan, M. U.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (07) : 1145 - 1154
  • [40] Inequalities Of Simpson Type For Quasi-Convex Functions and Applications
    Alomari, Mohammad
    Hussain, Sabir
    APPLIED MATHEMATICS E-NOTES, 2011, 11 : 110 - 117