Simpson's Second Type Integral Inequalities for Twice Differentiable Convex Functions

被引:0
|
作者
Iftikhar, Sabah [1 ]
Uche, Ugochukwu David [2 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, KMUTT Fixed Point Theory & Applicat Res Grp, KMUTT Fixed Point Res Lab, SCL 802 Fixed Point Lab,Dept Math,Fac Sci, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Natl Math Ctr Abuja, Math Programme, Kaduna Lokoja Rd, Abuja, Nigeria
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 03期
关键词
Simpson's type inequality; Integral inequalities; phi-convex functions; Special means;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors used a new auxiliary integral identity involving twice differentiable function based on a three step quadratic kernel omega(s) and obtained several new integral inequalities of Simpson's 3/8 type for functions whose second derivative absolute value power q are phi-convex and phi-quasiconvex function via Hlder's and power mean inequality. Then we also obtain some Simpson's second type integral inequalities as special cases of our main results and also provided some applications to special means.
引用
收藏
页码:766 / 783
页数:18
相关论文
共 50 条
  • [1] Simpson's Integral Inequalities for Twice Differentiable Convex Functions
    Vivas-Cortez, Miguel
    Abdeljawad, Thabet
    Mohammed, Pshtiwan Othman
    Rangel-Oliveros, Yenny
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [2] NEW WEIGHTED INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE CONVEX FUNCTIONS
    Sarikaya, M. Z.
    Erden, S.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2016, 40 (01): : 15 - 33
  • [3] Fractional Simpson-Type Inequalities for Twice Differentiable Functions
    Budak, Hueseyin
    Kara, Hasan
    Hezenci, Fatih
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03): : 97 - 108
  • [4] A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions
    Hezenci, Fatih
    [J]. MATHEMATICA SLOVACA, 2023, 73 (03) : 675 - 686
  • [5] On generalized fractional integral inequalities for twice differentiable convex functions
    Mohammed, Pshtiwan Othman
    Sarikaya, Mehmet Zeki
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [6] Integral inequalities of Simpson's type for (α, m)-convex functions
    Shuang, Ye
    Wang, Yan
    Qi, Feng
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6364 - 6370
  • [7] New integral inequalities of Hermite–Hadamard’s and Simpson’s type for twice differentiable mappings
    Zaffer Elahi
    Muhammad Muddassar
    [J]. Mathematical Sciences, 2019, 13 : 279 - 285
  • [8] Fractional Simpson like type inequalities for differentiable s-convex functions
    Kamouche, N.
    Ghomrani, S.
    Meftah, B.
    [J]. JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) : 73 - 91
  • [9] FRACTIONAL SIMPSON LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS
    Bouhadjar, S.
    Meftah, B.
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (03): : 563 - 584
  • [10] FRACTIONAL SIMPSON LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS
    Bouhadjar, S.
    Meftah, B.
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 16 (03): : 563 - 584