SIMPSON'S AND NEWTON'S TYPE QUANTUM INTEGRAL INEQUALITIES FOR PREINVEX FUNCTIONS

被引:3
|
作者
Ali, Muhammad Aamir [1 ]
Abbas, Mujahid [2 ]
Sehar, Mubarra [2 ]
Murtaza, Ghulam [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[2] Govt Coll Univ, Dept Math, Lahore 54000, Pakistan
[3] Univ Management & Technol, Dept Math SSC, Lahore, Pakistan
来源
KOREAN JOURNAL OF MATHEMATICS | 2021年 / 29卷 / 01期
关键词
Simpson's inequalities; q-integral; q-derivative; preinvex function; HERMITE-HADAMARD INEQUALITIES; MIDPOINT-TYPE INEQUALITIES; CONVEX;
D O I
10.11568/kjm.2021.29.1.193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this research, we offer two new quantum integral equalities for recently defined q(epsilon 2)-integral and derivative, the derived equalities then used to prove quantum integral inequalities of Simpson's and Newton's type for preinvex functions. We also considered the special cases of established results and offer several new and existing results inside the literature of Simpson's and Newton's type inequalities.
引用
收藏
页码:193 / 209
页数:17
相关论文
共 50 条
  • [1] New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Huseyin
    Agarwal, Praveen
    Murtaza, Ghulam
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [2] New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions
    Muhammad Aamir Ali
    Mujahid Abbas
    Hüseyin Budak
    Praveen Agarwal
    Ghulam Murtaza
    Yu-Ming Chu
    Advances in Difference Equations, 2021
  • [3] Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions
    Deng, Yongping
    Awan, Muhammad Uzair
    Wu, Shanhe
    MATHEMATICS, 2019, 7 (08)
  • [4] WEIGHTED SIMPSON'S TYPE INTEGRAL INEQUALITIES FOR HARMONICALLY-PREINVEX FUNCTIONS
    LATIF, M. A.
    HUSSAIN, S.
    MADEEHA
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 311 - 326
  • [5] Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions
    Du, Ting-Song
    Liao, Jia-Gen
    Li, Yu-Jiao
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3112 - 3126
  • [6] SOME NEW INTEGRAL INEQUALITIES OF HADAMARD-SIMPSON TYPE FOR EXTENDED (s, m)-PREINVEX FUNCTIONS
    Li, Yujiao
    Du, Tingsong
    Yu, Bo
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 583 - 600
  • [7] Simpson's and Newton's Type Inequalities for (α, m)-Convex Functions via Quantum Calculus
    Soontharanon, Jarunee
    Ali, Muhammad Aamir
    Budak, Huseyin
    Nonlaopon, Kamsing
    Abdullah, Zoya
    SYMMETRY-BASEL, 2022, 14 (04):
  • [8] A new extension of quantum Simpson's and quantum Newton's type inequalities for quantum differentiable convex functions
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 1845 - 1863
  • [9] Some New Simpson's and Newton's Formulas Type Inequalities for Convex Functions in Quantum Calculus
    Siricharuanun, Pimchana
    Erden, Samet
    Ali, Muhammad Aamir
    Budak, Huseyin
    Chasreechai, Saowaluck
    Sitthiwirattham, Thanin
    MATHEMATICS, 2021, 9 (16)
  • [10] Integral inequalities of Simpson's type for (α, m)-convex functions
    Shuang, Ye
    Wang, Yan
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6364 - 6370