SIMPSON'S AND NEWTON'S TYPE QUANTUM INTEGRAL INEQUALITIES FOR PREINVEX FUNCTIONS

被引:3
|
作者
Ali, Muhammad Aamir [1 ]
Abbas, Mujahid [2 ]
Sehar, Mubarra [2 ]
Murtaza, Ghulam [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[2] Govt Coll Univ, Dept Math, Lahore 54000, Pakistan
[3] Univ Management & Technol, Dept Math SSC, Lahore, Pakistan
来源
KOREAN JOURNAL OF MATHEMATICS | 2021年 / 29卷 / 01期
关键词
Simpson's inequalities; q-integral; q-derivative; preinvex function; HERMITE-HADAMARD INEQUALITIES; MIDPOINT-TYPE INEQUALITIES; CONVEX;
D O I
10.11568/kjm.2021.29.1.193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this research, we offer two new quantum integral equalities for recently defined q(epsilon 2)-integral and derivative, the derived equalities then used to prove quantum integral inequalities of Simpson's and Newton's type for preinvex functions. We also considered the special cases of established results and offer several new and existing results inside the literature of Simpson's and Newton's type inequalities.
引用
收藏
页码:193 / 209
页数:17
相关论文
共 50 条
  • [41] HERMITE-HADAMARD TYPE LOCAL FRACTIONAL INTEGRAL INEQUALITIES FOR GENERALIZED s-PREINVEX FUNCTIONS AND THEIR GENERALIZATION
    Sun, Wenbing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)
  • [42] Hermite-Hadamard Type Fractional Integral Inequalities for Preinvex Functions
    LIAN TIE-YAN
    TANG WEI
    ZHOU RUI
    Ji You-qing
    Communications in Mathematical Research, 2018, 34 (04) : 351 - 362
  • [43] Some generalized fractional integral Simpson's type inequalities with applications
    Hussain, Sabir
    Khalid, Javairiya
    Chu, Yu Ming
    AIMS MATHEMATICS, 2020, 5 (06): : 5859 - 5883
  • [44] A generalization of Simpson type inequality via differentiable functions using extended (s, m)φ-preinvex functions
    Li, Yujiao
    Du, Tingsong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (04) : 613 - 632
  • [45] Some New Post-Quantum Simpson's Type Inequalities for Coordinated Convex Functions
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Ntouyas, Sotiris K.
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    MATHEMATICS, 2022, 10 (06)
  • [46] Hermite-Hadamard type inequalities for operator s-preinvex functions
    Wang, Shu-Hong
    Liu, Xi-Min
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (06): : 1070 - 1081
  • [47] On Some Generalized Simpson's and Newton's Inequalities for (α, m)-Convex Functions in q-Calculus
    Sial, Ifra Bashir
    Mei, Sun
    Ali, Muhammad Aamir
    Nonlaopon, Kamsing
    MATHEMATICS, 2021, 9 (24)
  • [48] SIMPSON, NEWTON AND GAUSS TYPE INEQUALITIES
    Bencze, Mihaly
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (01): : 65 - 74
  • [49] Integral inequalities of extended Simpson type for (α, m)-ε-convex functions
    Zhang, Jun
    Pei, Zhi-Li
    Xu, Gao-Chao
    Zou, Xiao-Hui
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01): : 122 - 129
  • [50] SIMPSON TYPE QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS (vol 19, pg 649, 2018)
    Alp, Necmettin
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 33 - 36