New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions

被引:78
|
作者
Ali, Muhammad Aamir [1 ]
Abbas, Mujahid [2 ]
Budak, Huseyin [3 ]
Agarwal, Praveen [4 ]
Murtaza, Ghulam [5 ]
Chu, Yu-Ming [6 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[2] Govt Coll Univ, Dept Math, Lahore, Pakistan
[3] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[4] Anand Int Coll Engn, Dept Math, Jaipur, Rajasthan, India
[5] Univ Management Technol, Dept Math, Lahore, Pakistan
[6] Dept Math, Huzhou Univ, Huzhou, Peoples R China
关键词
Simpson's <mml:mfrac><mml:mn>1</mml:mn><mml:mn>3</mml:mn></mml:mfrac> formula; Simpson's <mml:mfrac><mml:mn>3</mml:mn><mml:mn>8</mml:mn></mml:mfrac> formula; Integral inequalities; Quantum calculus; Preinvex functions; HERMITE-HADAMARD INEQUALITIES; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.1186/s13662-021-03226-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we derive two generalized integral identities involving the q kappa 2-quantum integrals and quantum numbers, the results are then used to establish some new quantum boundaries for quantum Simpson's and quantum Newton's inequalities for q-differentiable preinvex functions. Moreover, we obtain some new and known Simpson's and Newton's type inequalities by considering the limit q -> 1- in the key results of this paper.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions
    Muhammad Aamir Ali
    Mujahid Abbas
    Hüseyin Budak
    Praveen Agarwal
    Ghulam Murtaza
    Yu-Ming Chu
    Advances in Difference Equations, 2021
  • [2] SIMPSON'S AND NEWTON'S TYPE QUANTUM INTEGRAL INEQUALITIES FOR PREINVEX FUNCTIONS
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Sehar, Mubarra
    Murtaza, Ghulam
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (01): : 193 - 209
  • [3] A new extension of quantum Simpson's and quantum Newton's type inequalities for quantum differentiable convex functions
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 1845 - 1863
  • [4] Some New Simpson's and Newton's Formulas Type Inequalities for Convex Functions in Quantum Calculus
    Siricharuanun, Pimchana
    Erden, Samet
    Ali, Muhammad Aamir
    Budak, Huseyin
    Chasreechai, Saowaluck
    Sitthiwirattham, Thanin
    MATHEMATICS, 2021, 9 (16)
  • [5] Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions
    Deng, Yongping
    Awan, Muhammad Uzair
    Wu, Shanhe
    MATHEMATICS, 2019, 7 (08)
  • [6] Simpson's and Newton's Type Inequalities for (α, m)-Convex Functions via Quantum Calculus
    Soontharanon, Jarunee
    Ali, Muhammad Aamir
    Budak, Huseyin
    Nonlaopon, Kamsing
    Abdullah, Zoya
    SYMMETRY-BASEL, 2022, 14 (04):
  • [7] On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters
    Promsakon, Chanon
    Ali, Muhammad Aamir
    Budak, Huseyin
    Abbas, Mujahid
    Muhammad, Faheem
    Sitthiwirattham, Thanin
    AIMS MATHEMATICS, 2021, 6 (12): : 13954 - 13975
  • [8] New Quantum Boundaries for q-Simpson's Type Inequalities for Co-Ordinated Convex Functions
    Alp, Necmettin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    FILOMAT, 2022, 36 (12) : 3919 - 3940
  • [9] Some new Simpson's type inequalities for coordinated convex functions in quantum calculus
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    Yildirim, Huseyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4515 - 4540
  • [10] Some Parameterized Quantum Simpson's and Quantum Newton's Integral Inequalities via Quantum Differentiable Convex Mappings
    You, Xue Xiao
    Ali, Muhammad Aamir
    Budak, Hueseyin
    Vivas-Cortez, Miguel
    Qaisar, Shahid
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021