New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions

被引:78
|
作者
Ali, Muhammad Aamir [1 ]
Abbas, Mujahid [2 ]
Budak, Huseyin [3 ]
Agarwal, Praveen [4 ]
Murtaza, Ghulam [5 ]
Chu, Yu-Ming [6 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[2] Govt Coll Univ, Dept Math, Lahore, Pakistan
[3] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[4] Anand Int Coll Engn, Dept Math, Jaipur, Rajasthan, India
[5] Univ Management Technol, Dept Math, Lahore, Pakistan
[6] Dept Math, Huzhou Univ, Huzhou, Peoples R China
关键词
Simpson's <mml:mfrac><mml:mn>1</mml:mn><mml:mn>3</mml:mn></mml:mfrac> formula; Simpson's <mml:mfrac><mml:mn>3</mml:mn><mml:mn>8</mml:mn></mml:mfrac> formula; Integral inequalities; Quantum calculus; Preinvex functions; HERMITE-HADAMARD INEQUALITIES; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.1186/s13662-021-03226-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we derive two generalized integral identities involving the q kappa 2-quantum integrals and quantum numbers, the results are then used to establish some new quantum boundaries for quantum Simpson's and quantum Newton's inequalities for q-differentiable preinvex functions. Moreover, we obtain some new and known Simpson's and Newton's type inequalities by considering the limit q -> 1- in the key results of this paper.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Post-quantum Simpson's type inequalities for coordinated convex functions
    You, Xue-Xiao
    Ali, Muhammad Aamir
    Murtaza, Ghulam
    Chasreechai, Saowaluck
    Ntouyas, Sotiris K.
    Sitthiwirattham, Thanin
    AIMS MATHEMATICS, 2021, 7 (02): : 3097 - 3132
  • [12] Some New Post-Quantum Simpson's Type Inequalities for Coordinated Convex Functions
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Ntouyas, Sotiris K.
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    MATHEMATICS, 2022, 10 (06)
  • [13] Simpson and Newton type inequalities for convex functions via newly defined quantum integrals
    Budak, Huseyin
    Erden, Samet
    Ali, Muhammad Aamir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 378 - 390
  • [14] SIMPSON TYPE QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Tunc, M.
    Gov, E.
    Balgecti, S.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 649 - 664
  • [15] On Some New Simpson's Formula Type Inequalities for Convex Functions in Post-Quantum Calculus
    Vivas-Cortez, Miguel J.
    Ali, Muhammad Aamir
    Qaisar, Shahid
    Sial, Ifra Bashir
    Jansem, Sinchai
    Mateen, Abdul
    SYMMETRY-BASEL, 2021, 13 (12):
  • [16] Simpson's Type Inequalities for Co-Ordinated Convex Functions on Quantum Calculus
    Kalsoom, Humaira
    Wu, Jun-De
    Hussain, Sabir
    Latif, Muhammad Amer
    SYMMETRY-BASEL, 2019, 11 (06):
  • [17] NEW QUANTUM VARIANTS OF SIMPSON-NEWTON TYPE INEQUALITIES VIA (α, m)-CONVEXITY
    Butt, Saad Ihsan
    Ul Ain, Qurat
    Budak, Huseyin
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (02): : 161 - 180
  • [18] Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
    Sitho, Surang
    Ali, Muhammad Aamir
    Budak, Huseyin
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    MATHEMATICS, 2021, 9 (14)
  • [19] GENERALIZED QUANTUM MONTGOMERY IDENTITY AND OSTROWSKI TYPE INEQUALITIES FOR PREINVEX FUNCTIONS
    Kalsoom, Humaira
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Huseyin
    Murtaza, Ghulam
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 13 (01): : 72 - 90
  • [20] Some quantum integral inequalities via preinvex functions
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Awan, Muhammad Uzair
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 242 - 251