Post-quantum Simpson's type inequalities for coordinated convex functions

被引:1
|
作者
You, Xue-Xiao [1 ]
Ali, Muhammad Aamir [2 ]
Murtaza, Ghulam [3 ]
Chasreechai, Saowaluck [4 ]
Ntouyas, Sotiris K. [5 ,6 ]
Sitthiwirattham, Thanin [7 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Univ Management & Technol, Dept Math, Lahore, Pakistan
[4] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[5] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[6] King Abdulaziz Univ, Nonlinear Anal & Appl Math NiAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[7] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
来源
AIMS MATHEMATICS | 2021年 / 7卷 / 02期
关键词
Simpson's inequalities; (p; q)-integrals; post quantum calculus; co-ordinated convexity; MIDPOINT-TYPE INEQUALITIES; HERMITE-HADAMARD INEQUALITIES;
D O I
10.3934/math.2022172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some new Simpson's type inequalities for partial (p, q)-differentiable convex functions of two variables in the context of (p, q)-calculus. We also show that the findings in this paper are generalizations of comparable findings in the literature.
引用
收藏
页码:3097 / 3132
页数:36
相关论文
共 50 条
  • [1] Some New Post-Quantum Simpson's Type Inequalities for Coordinated Convex Functions
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Ntouyas, Sotiris K.
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    MATHEMATICS, 2022, 10 (06)
  • [2] On Some New Simpson's Formula Type Inequalities for Convex Functions in Post-Quantum Calculus
    Vivas-Cortez, Miguel J.
    Ali, Muhammad Aamir
    Qaisar, Shahid
    Sial, Ifra Bashir
    Jansem, Sinchai
    Mateen, Abdul
    SYMMETRY-BASEL, 2021, 13 (12):
  • [3] Some new Simpson's type inequalities for coordinated convex functions in quantum calculus
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    Yildirim, Huseyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4515 - 4540
  • [4] SIMPSON TYPE QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Tunc, M.
    Gov, E.
    Balgecti, S.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 649 - 664
  • [5] Post quantum Ostrowski-type inequalities for coordinated convex functions
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Ntouyas, Sortiris K.
    Budak, Huseyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 4159 - 4183
  • [6] Post-quantum Hermite–Hadamard type inequalities for interval-valued convex functions
    Muhammad Aamir Ali
    Hüseyin Budak
    Ghulam Murtaza
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2021
  • [7] A new extension of quantum Simpson's and quantum Newton's type inequalities for quantum differentiable convex functions
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 1845 - 1863
  • [8] Simpson's Type Inequalities for Co-Ordinated Convex Functions on Quantum Calculus
    Kalsoom, Humaira
    Wu, Jun-De
    Hussain, Sabir
    Latif, Muhammad Amer
    SYMMETRY-BASEL, 2019, 11 (06):
  • [9] Simpson's and Newton's Type Inequalities for (α, m)-Convex Functions via Quantum Calculus
    Soontharanon, Jarunee
    Ali, Muhammad Aamir
    Budak, Huseyin
    Nonlaopon, Kamsing
    Abdullah, Zoya
    SYMMETRY-BASEL, 2022, 14 (04):
  • [10] Trapezoidal-Type Inequalities for Strongly Convex and Quasi-Convex Functions via Post-Quantum Calculus
    Kalsoom, Humaira
    Vivas-Cortez, Miguel
    Latif, Muhammad Amer
    ENTROPY, 2021, 23 (10)