Post-quantum Simpson's type inequalities for coordinated convex functions

被引:1
|
作者
You, Xue-Xiao [1 ]
Ali, Muhammad Aamir [2 ]
Murtaza, Ghulam [3 ]
Chasreechai, Saowaluck [4 ]
Ntouyas, Sotiris K. [5 ,6 ]
Sitthiwirattham, Thanin [7 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Univ Management & Technol, Dept Math, Lahore, Pakistan
[4] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[5] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[6] King Abdulaziz Univ, Nonlinear Anal & Appl Math NiAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[7] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
来源
AIMS MATHEMATICS | 2021年 / 7卷 / 02期
关键词
Simpson's inequalities; (p; q)-integrals; post quantum calculus; co-ordinated convexity; MIDPOINT-TYPE INEQUALITIES; HERMITE-HADAMARD INEQUALITIES;
D O I
10.3934/math.2022172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some new Simpson's type inequalities for partial (p, q)-differentiable convex functions of two variables in the context of (p, q)-calculus. We also show that the findings in this paper are generalizations of comparable findings in the literature.
引用
收藏
页码:3097 / 3132
页数:36
相关论文
共 50 条
  • [41] Integral inequalities of extended Simpson type for (α, m)-ε-convex functions
    Zhang, Jun
    Pei, Zhi-Li
    Xu, Gao-Chao
    Zou, Xiao-Hui
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01): : 122 - 129
  • [42] SOME SIMPSON TYPE INEQUALITIES FOR h-CONVEX AND (α, m)-CONVEX FUNCTIONS
    Liu, Wenjun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (05) : 1005 - 1012
  • [43] SIMPSON TYPE QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS (vol 19, pg 649, 2018)
    Alp, Necmettin
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 33 - 36
  • [44] SIMPSON'S TYPE INEQUALITIES VIA THE KATUGAMPOLA FRACTIONAL INTEGRALS FOR s-CONVEX FUNCTIONS
    Kermausuor, Seth
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 709 - 720
  • [45] Fractional dual Simpson-type inequalities for differentiable s-convex functions
    Kamouche, Nesrine
    Ghomrani, Sarra
    Meftah, Badreddine
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (02): : 75 - 84
  • [46] New Inequalities of Simpson's type for differentiable functions via generalized convex function
    Farooq, Shan E.
    Shabir, Khurram
    Qaisar, Shahid
    Ahmad, Farooq
    Almatroud, O. A.
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (02) : 137 - 147
  • [47] SOME SIMPSON TYPE INTEGRAL INEQUALITIES FOR s-GEOMETRICALLY CONVEX FUNCTIONS WITH APPLICATIONS
    Kavurmaci-Onalan, Havva
    Tunc, Mevlut
    MATEMATICHE, 2014, 69 (02): : 193 - 204
  • [48] Simpson, midpoint, and trapezoid-type inequalities for multiplicatively s-convex functions
    Ozcan, Serap
    DEMONSTRATIO MATHEMATICA, 2025, 58 (01)
  • [49] New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Huseyin
    Agarwal, Praveen
    Murtaza, Ghulam
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [50] New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions
    Muhammad Aamir Ali
    Mujahid Abbas
    Hüseyin Budak
    Praveen Agarwal
    Ghulam Murtaza
    Yu-Ming Chu
    Advances in Difference Equations, 2021