Bogdanov-Takens bifurcation in a predator-prey model

被引:12
|
作者
Liu, Zhihua [1 ]
Magal, Pierre [2 ,3 ]
Xiao, Dongmei [4 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Bordeaux, IMB, UMR 5251, F-33400 Talence, France
[3] CNRS, IMB, UMR 5251, F-33400 Talence, France
[4] Shanghai Jiao Tong Univ, Dept Math, MOE LSC, Shanghai 200240, Peoples R China
来源
关键词
Predator-prey model; Age structure; Normal forms; Non-densely defined; Bogdanov-Takens bifurcation; NORMAL FORMS; DIFFERENTIAL-EQUATIONS; HOPF-BIFURCATION; SYSTEM; OSCILLATIONS; STABILITY; DELAY;
D O I
10.1007/s00033-016-0724-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of predator-prey model with age structure and discuss whether the model can undergo Bogdanov-Takens bifurcation. The analysis is based on the normal form theory and the center manifold theory for semilinear equations with non-dense domain combined with integrated semigroup theory. Qualitative analysis indicates that there exist some parameter values such that this predator-prey model has an unique positive equilibrium which is Bogdanov-Takens singularity. Moreover, it is shown that under suitable small perturbation, the system undergoes the Bogdanov-Takens bifurcation in a small neighborhood of this positive equilibrium.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Bogdanov-Takens bifurcation and multi-peak spatiotemporal staggered periodic patterns in a nonlocal Holling-Tanner predator-prey model
    Cao, Xun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [22] TAKENS-BOGDANOV NUMERICAL ANALYSIS IN PREDATOR-PREY MODEL WITH DELAY
    Mabonzo, V. D.
    Okandze, R. Eyelangoli
    Langa, F. D.
    MATEMATICKI VESNIK, 2019, 71 (04): : 304 - 315
  • [23] Bogdanov–Takens bifurcation analysis of a delayed predator-prey system with double Allee effect
    Jianfeng Jiao
    Can Chen
    Nonlinear Dynamics, 2021, 104 : 1697 - 1707
  • [24] Bogdanov-Takens Bifurcation of a Delayed Ratio-Dependent Holling-Tanner Predator Prey System
    Liu, Xia
    Liu, Yanwei
    Wang, Jinling
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [25] Improved Homoclinic Predictor for Bogdanov-Takens Bifurcation
    Kuznetsov, Yu. A.
    Meijer, H. G. E.
    Al Hdaibat, B.
    Govaerts, W.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [26] A Note on the Bogdanov-Takens Bifurcation in the Romer Model with Learning by Doing
    Bella, Giovanni
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (01):
  • [27] Bogdanov-Takens bifurcation of an enzyme-catalyzed reaction model
    Wu, Ranchao
    Yang, Lingling
    NONLINEAR DYNAMICS, 2024, 112 (16) : 14363 - 14377
  • [28] Bogdanov-Takens Bifurcation Analysis of a Learning-Process Model
    Zhu, Zhenliang
    Guan, Yuxian
    AXIOMS, 2023, 12 (09)
  • [29] An autonomous and nonautonomous predator-prey model with fear, refuge, and nonlinear harvesting: Backward, Bogdanov-Takens, transcritical bifurcations, and optimal control
    Mondal, Bapin
    Sarkar, Susmita
    Ghosh, Uttam
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 17260 - 17287
  • [30] Chaotic zone in the Bogdanov-Takens bifurcation for diffeomorphisms
    Gelfreich, V
    ANALYSIS AND APPLICATIONS - ISAAC 2001, 2003, 10 : 187 - 197