Improved Homoclinic Predictor for Bogdanov-Takens Bifurcation

被引:17
|
作者
Kuznetsov, Yu. A. [1 ]
Meijer, H. G. E. [1 ]
Al Hdaibat, B. [2 ]
Govaerts, W. [2 ]
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[2] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
来源
关键词
Normal form; Bogdanov-Takens bifurcation; homoclinic orbit; center manifold; MatCont; FIELD-ORIENTED CONTROL; MATCONT;
D O I
10.1142/S0218127414500576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An improved homoclinic predictor at a generic codim 2 Bogdanov-Takens (BT) bifucation is derived. We use the classical "blow-up" technique to reduce the canonical smooth normal form near a generic BT bifurcation to a perturbed Hamiltonian system. With a simple perturbation method, we derive explicit first- and second-order corrections of the unperturbed homoclinic orbit and parameter value. To obtain the normal form on the center manifold, we apply the standard parameter-dependent center manifold reduction combined with the normalization, that is based on the Fredholm solvability of the homological equation. By systematically solving all linear systems appearing from the homological equation, we remove an ambiguity in the parameter transformation existing in the literature. The actual implementation of the improved predictor in MatCont and numerical examples illustrating its efficiency are discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Bogdanov-Takens Bifurcation
    Liebscher, Stefan
    [J]. BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 81 - 102
  • [2] Limit cycles and homoclinic orbits and their bifurcation of Bogdanov-Takens system
    黄赪彪
    刘佳
    [J]. Applied Mathematics and Mechanics(English Edition), 2008, (09) : 1195 - 1201
  • [3] Limit cycles and homoclinic orbits and their bifurcation of Bogdanov-Takens system
    Cheng-biao Huang
    Jia Liu
    [J]. Applied Mathematics and Mechanics, 2008, 29 : 1195 - 1201
  • [4] Limit cycles and homoclinic orbits and their bifurcation of Bogdanov-Takens system
    Huang Cheng-biao
    Liu Jia
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (09) : 1195 - 1201
  • [5] Remarks on homoclinic structure in Bogdanov-Takens map
    Al-Hdaibat, B.
    Govaerts, W.
    van Kekem, D. L.
    Kuznetsov, Yu. A.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (04) : 575 - 587
  • [6] Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms
    Broer, H
    Roussarie, R
    Simo, C
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 : 1147 - 1172
  • [7] Chaotic zone in the Bogdanov-Takens bifurcation for diffeomorphisms
    Gelfreich, V
    [J]. ANALYSIS AND APPLICATIONS - ISAAC 2001, 2003, 10 : 187 - 197
  • [8] BOGDANOV-TAKENS BIFURCATION IN PREDATOR-PREY SYSTEMS
    Zeng, Bing
    Deng, Shengfu
    Yu, Pei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (11): : 3253 - 3269
  • [9] Practical computation of normal forms of the Bogdanov-Takens bifurcation
    Peng, Guojun
    Jiang, Yaolin
    [J]. NONLINEAR DYNAMICS, 2011, 66 (1-2) : 99 - 132
  • [10] On Uniqueness of Limit Cycles in General Bogdanov-Takens Bifurcation
    Han, Maoan
    Llibre, Jaume
    Yang, Junmin
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (09):