Chaotic zone in the Bogdanov-Takens bifurcation for diffeomorphisms

被引:0
|
作者
Gelfreich, V [1 ]
机构
[1] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
来源
关键词
Bogdanov-Takens bifurcation; homoclinic orbits; exponentially small phenomena;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a two-parametric analytic family of diffeomorphisms near the Bogdanov-Takens bifurcation. It is known that if the parameters belong to a homoclinic zone, the map has homoclinic points. The width of the homoclinic zone is exponentially small. We derive an asymptotic formula for the width of the homoclinic zone. An analytic invariant associated with a parabolic fixed point is an important ingredient of this formula. The proof of the asymptotic formula is not complete. Additionally we provide results of computations of the invariant for model families.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [1] Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms
    Broer, H
    Roussarie, R
    Simo, C
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 : 1147 - 1172
  • [2] Bogdanov-Takens Bifurcation
    Liebscher, Stefan
    [J]. BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 81 - 102
  • [3] Improved Homoclinic Predictor for Bogdanov-Takens Bifurcation
    Kuznetsov, Yu. A.
    Meijer, H. G. E.
    Al Hdaibat, B.
    Govaerts, W.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [4] BOGDANOV-TAKENS BIFURCATION IN PREDATOR-PREY SYSTEMS
    Zeng, Bing
    Deng, Shengfu
    Yu, Pei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (11): : 3253 - 3269
  • [5] Practical computation of normal forms of the Bogdanov-Takens bifurcation
    Peng, Guojun
    Jiang, Yaolin
    [J]. NONLINEAR DYNAMICS, 2011, 66 (1-2) : 99 - 132
  • [6] On Uniqueness of Limit Cycles in General Bogdanov-Takens Bifurcation
    Han, Maoan
    Llibre, Jaume
    Yang, Junmin
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (09):
  • [7] Bogdanov-Takens bifurcation in a predator-prey model
    Liu, Zhihua
    Magal, Pierre
    Xiao, Dongmei
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06):
  • [8] BOGDANOV-TAKENS BIFURCATION FOR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
    Cao, Jianzhi
    Yuan, Rong
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [9] Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction
    Tang, YL
    Zhang, WN
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) : 869 - 883
  • [10] Bogdanov-Takens bifurcation of an enzyme-catalyzed reaction model
    Wu, Ranchao
    Yang, Lingling
    [J]. NONLINEAR DYNAMICS, 2024, 112 (16) : 14363 - 14377